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The sun is a sphere of intensely hot gaseous matter with a diameter of 
1.39  109 m (see Figure 2.1). The sun is about 1.5  108 km away from earth, 
so, because thermal radiation travels with the speed of light in a vacuum 
(300,000 km/s), after leaving the sun solar energy reaches our planet in 8 min 
and 20 s. As observed from the earth, the sun disk forms an angle of 32 min 
of a degree. This is important in many applications, especially in concentra-
tor optics, where the sun cannot be considered as a point source and even this 
small angle is significant in the analysis of the optical behavior of the collector. 
The sun has an effective black-body temperature of 5760 K. The temperature in 
the central region is much higher. In effect, the sun is a continuous fusion reac-
tor in which hydrogen is turned into helium. The sun’s total energy output is 
3.8  1020 MW, which is equal to 63 MW/m2 of the sun’s surface. This energy 
radiates outward in all directions. The earth receives only a tiny fraction of the 
total radiation emitted, equal to 1.7  1014 kW; however, even with this small 
fraction, it is estimated that 84 min of solar radiation falling on earth is equal to 
the world energy demand for one year (about 900 EJ). As seen from the earth, 
the sun rotates around its axis about once every four weeks.

As observed from earth, the path of the sun across the sky varies through-
out the year. The shape described by the sun’s position, considered at the same 
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Figure 2.1  Sun-earth relationship.



50  Environmental Characteristics
time each day for a complete year, is called the analemma and resembles a fig-
ure 8 aligned along a north-south axis. The most obvious variation in the sun’s 
apparent position through the year is a north-south swing over 47° of angle 
(because of the 23.5° tilt of the earth axis with respect to the sun), called dec-
lination (see Section 2.2). The north-south swing in apparent angle is the main 
cause for the existence of seasons on earth.

Knowledge of the sun’s path through the sky is necessary to calculate the solar 
radiation falling on a surface, the solar heat gain, the proper orientation of solar col-
lectors, the placement of collectors to avoid shading, and many more factors that 
are not of direct interest in this book. The objective of this chapter is to describe the 
movements of the sun relative to the earth that give to the sun its east-west trajec-
tory across the sky. The variation of solar incidence angle and the amount of solar 
energy received are analyzed for a number of fixed and tracking surfaces. The envi-
ronment in which a solar system works depends mostly on the solar energy avail-
ability. Therefore, this is analyzed in some detail. The general weather of a location 
is required in many energy calculations. This is usually presented as a typical mete-
orological year (TMY) file, which is described in the last section of this chapter.

2.1  Reckoning of time
In solar energy calculations, apparent solar time (AST) must be used to express 
the time of day. Apparent solar time is based on the apparent angular motion 
of the sun across the sky. The time when the sun crosses the meridian of the 
observer is the local solar noon. It usually does not coincide with the 12:00 
o’clock time of a locality. To convert the local standard time (LST) to apparent 
solar time, two corrections are applied; the equation of time and longitude cor-
rection. These are analyzed next.

2.1.1  Equation of Time
Due to factors associated with the earth’s orbit around the sun, the earth’s 
orbital velocity varies throughout the year, so the apparent solar time varies 
slightly from the mean time kept by a clock running at a uniform rate. The vari-
ation is called the equation of time (ET). The equation of time arises because 
the length of a day, that is, the time required by the earth to complete one revo-
lution about its own axis with respect to the sun, is not uniform throughout the 
year. Over the year, the average length of a day is 24 h; however, the length of 
a day varies due to the eccentricity of the earth’s orbit and the tilt of the earth’s 
axis from the normal plane of its orbit. Due to the ellipticity of the orbit, the 
earth is closer to the sun on January 3 and furthest from the sun on July 4. 
Therefore the earth’s orbiting speed is faster than its average speed for half the 
year (from about October through March) and slower than its average speed 
for the remaining half of the year (from about April through September).

The values of the equation of time as a function of the day of the year (N) 
can be obtained approximately from the following equations:

	 ET B B B  [min]  9 87 2 7 53 1 5. sin( ) . cos( ) . sin( ) 	 (2.1)
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and

	
B N ( )81

360

364
	 (2.2)

A graphical representation of Eq. (2.1) is shown in Figure 2.2, from which the 
equation of time can be obtained directly.

2.1.2  Longitude Correction
The standard clock time is reckoned from a selected meridian near the center 
of a time zone or from the standard meridian, the Greenwich, which is at longi-
tude of 0°. Since the sun takes 4 min to transverse 1° of longitude, a longitude 
correction term of 4  (Standard longitude  Local longitude) should be either 
added or subtracted to the standard clock time of the locality. This correction 
is constant for a particular longitude, and the following rule must be followed 
with respect to sign convention. If the location is east of the standard meridian, 
the correction is added to the clock time. If the location is west, it is subtracted. 
The general equation for calculating the apparent solar time (AST) is

	 AST LST ET 4 SL LL DS    ( ) 	 (2.3)

where
LST  local standard time.
ET   equation of time.
SL   standard longitude.
LL   local longitude.
DS   daylight saving (it is either 0 or 60 min).

If a location is east of Greenwich, the sign of Eq. (2.3) is minus (), and 
if it is west, the sign is plus (). If a daylight saving time is used, this must be 
subtracted from the local standard time. The term DS depends on whether day-
light saving time is in operation (usually from end of March to end of October) 
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or not. This term is usually ignored from this equation and considered only if 
the estimation is within the DS period.

E x a m p l e  2 . 1

Find the equation of AST for the city of Nicosia, Cyprus.

Solution
For the locality of Cyprus, the standard longitude (SL) is 30°E. The city of Nicosia 
is at a local longitude (LL) of 33.33° east of Greenwich. Therefore, the longitude 
correction is –4  (30  33.33)  13.32 min. Thus, Eq. (2.3) can be written as

AST LST ET  (min)   13 32.

2.2  Solar angles
The earth makes one rotation about its axis every 24 h and completes a revolu-
tion about the sun in a period of approximately �����������������������������   365.25 days������������������  . This revolution 
is not circular but follows an ellipse with the sun at one of the foci, as shown 
in Figure 2.3. The eccentricity, e, of the earth’s orbit is very small, equal to 
0.01673. Therefore, the orbit of the earth round the sun is almost circular. The 
sun-earth distance, R, at perihelion (shortest distance, at January 3) and aph-
elion (longest distance, at July 4) is given by Garg (1982):

	 R a e ( )1 	 (2.4)

where a  mean sun-earth distance  149.5985  106 km.
The plus sign in Eq. (2.4) is for the sun-earth distance when the earth is at 

the aphelion position and the minus sign for the perihelion position. The solu-
tion of Eq. (2.4) gives values for the longest distance equal to 152.1  106 km 
and for the shortest distance equal to 147.1  106 km, as shown in Figure 2.3. 
The difference between the two distances is only 3.3%. The mean sun-earth 
distance, a, is defined as half the sum of the perihelion and aphelion distances.

The sun’s position in the sky changes from day to day and from hour to 
hour. It is common knowledge that the sun is higher in the sky in the summer 
than in winter. The relative motions of the sun and earth are not simple, but 
they are systematic and thus predictable. Once a year, the earth moves around 
the sun in an orbit that is elliptical in shape. As the earth makes its yearly revo-
lution around the sun, it rotates every 24 h about its axis, which is tilted at an 
angle of 23° 27.14 min (23.45°) to the plane of the elliptic, which contains the 
earth’s orbital plane and the sun’s equator, as shown in Figure 2.3.

The most obvious apparent motion of the sun is that it moves daily in an 
arc across the sky, reaching its highest point at midday. As winter becomes 
spring and then summer, the sunrise and sunset points move gradually north-
ward along the horizon. In the Northern Hemisphere, the days get longer as the  
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sun rises earlier and sets later each day and the sun’s path gets higher in the 
sky. On June 21 the sun is at its most northerly position with respect to the 
earth. This is called the summer solstice and during this day the daytime is at a 
maximum. Six months later, on December 21, the winter solstice, the reverse is 
true and the sun is at its most southerly position (see Figure 2.4). In the middle 
of the six-month range, on March 21 and September 21, the length of the day 
is equal to the length of the night. These are called spring and fall equinoxes, 
respectively. The summer and winter solstices are the opposite in the Southern 
Hemisphere; that is, summer solstice is on December 21 and winter solstice 
is on June 21. It should be noted that all these dates are approximate and that 
there are small variations (difference of a few days) from year to year.

Fall equinox—September 21

Spring equinox—March 21

365.25 Days

Earth

Sun

Ecliptic 
axis

24.7 Days

23.45°24 Hours

Polar axis

152.1 � 106km 147.1 � 106km

Summer solstice—June 21 Winter solstice—December 21

Figure 2.3  Annual motion of the earth about the sun.
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Figure 2.4  Annual changes in the sun’s position in the sky (northern hemisphere).
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For the purposes of this book, the Ptolemaic view of the sun’s motion is used 
in the analysis that follows, for simplicity; that is, since all motion is relative, it 
is convenient to consider the earth fixed and to describe the sun’s virtual motion 
in a coordinate system fixed to the earth with its origin at the site of interest.

For most solar energy applications, one needs reasonably accurate predic-
tions of where the sun will be in the sky at a given time of day and year. In the 
Ptolemaic sense, the sun is constrained to move with 2 degrees of freedom on 
the celestial sphere; therefore, its position with respect to an observer on earth 
can be fully described by means of two astronomical angles, the solar altitude 
() and the solar azimuth (z). The following is a description of each angle, 
together with the associated formulation. An approximate method for calculat-
ing these angles is by means of sun-path diagrams (see Section 2.2.2).

Before giving the equations of solar altitude and azimuth angles, the solar 
declination and hour angle need to be defined. These are required in all other 
solar angle formulations.

Declination, 
As shown in Figure 2.3 the earth axis of rotation (the polar axis) is always 
inclined at an angle of 23.45° from the ecliptic axis, which is normal to the 
ecliptic plane. The ecliptic plane is the plane of orbit of the earth around the 
sun. As the earth rotates around the sun it is as if the polar axis is moving with 
respect to the sun. The solar declination is the angular distance of the sun’s 
rays north (or south) of the equator, north declination designated as positive. 
As shown in Figure 2.5 it is the angle between the sun-earth center line and the 
projection of this line on the equatorial plane. Declinations north of the equator 
(summer in the Northern Hemisphere) are positive, and those south are nega-
tive. Figure 2.6 shows the declination during the equinoxes and the solstices. As 
can be seen, the declination ranges from 0° at the spring equinox to 23.45° at 
the summer solstice, 0° at the fall equinox, and 23.45° at the winter solstice.
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Figure 2.5  Definition of latitude, hour angle, and solar declination.
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The variation of the solar declination throughout the year is shown in Figure 
2.7. The declination, , in degrees for any day of the year (N) can be calculated 
approximately by the equation (ASHRAE, 2007)

	
δ  23 45

360

365
284. sin ( )N












	 (2.5)

Declination can also be given in radians1 by the Spencer formula (Spencer, 
1971):

	

   

  

0 006918 0 399912 0 070257
0 006758 2

. . cos( ) . sin( )
. ( )

Γ
Γ

Γ
cos   

   

0 000907 2
0 002697 3 0 00148 3

. sin( )
. cos( ) . sin( )

Γ
Γ Γ 	 (2.6)

where  is called the day angle, given (in radians) by

	
Γ

π


2 1

365

( )N
	 (2.7)

The solar declination during any given day can be considered constant in engi-
neering calculations (Kreith and Kreider, 1978; Duffie and Beckman, 1991).

1 Radians can be converted to degrees by multiplying by 180 and dividing by .
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As shown in Figure 2.6, the Tropics of Cancer (23.45°N) and Capricorn 
(23.45°S) are the latitudes where the sun is overhead during summer and win-
ter solstice, respectively. Another two latitudes of interest are the Arctic (66.5°N) 
and Antarctic (66.5°S) Circles. As shown in Figure 2.6, at winter solstice all 
points north of the Arctic Circle are in complete darkness, whereas all points 
south of the Antarctic Circle receive continuous sunlight. The opposite is true for 
the summer solstice. During spring and fall equinoxes, the North and South Poles 
are equidistant from the sun and daytime is equal to nighttime, both of which 
equal 12 h.

Because the day number and the hour of the year are frequently required in 
solar geometry calculations, Table 2.1 is given for easy reference.

Hour angle, h
The hour angle, h, of a point on the earth’s surface is defined as the angle 
through which the earth would turn to bring the meridian of the point directly 
under the sun. Figure 2.5 shows the hour angle of point P as the angle measured 
on the earth’s equatorial plane between the projection of OP and the projection 
of the sun-earth center to center line. The hour angle at local solar noon is zero, 
with each 360/24 or 15° of longitude equivalent to 1 h, afternoon hours being 
designated as positive. Expressed symbolically, the hour angle in degrees is

	 h  0 25. ( ) Number of minutes from local solar noon 	 (2.8)

where the plus sign applies to afternoon hours and the minus sign to morning 
hours.

Table 2.1  Day Number and Recommended Average Day for Each Month

Month Day number Average day of the month

Date N  (deg.)

January i 17 17 20.92

February 31  i 16 47 12.95

March 59  i 16 75 2.42

April 90  i 15 105 9.41

May 120  i 15 135 18.79

June 151  i 11 162 23.09

July 181  i 17 198 21.18

August 212  i 16 228 13.45

September 243  i 15 258 2.22

October 273  i 15 288 9.60

November 304  i 14 318 18.91

December 334  i 10 344 23.05
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The hour angle can also be obtained from the apparent solar time (AST); 
i.e., the corrected local solar time is

	 h  ( )AST 12 15 	 (2.9)

At local solar noon, AST  12 and h  0°. Therefore, from Eq. (2.3), the local 
standard time (the time shown by our clocks at local solar noon) is

	 LST ET SL LL   12 4( ) 	 (2.10)

E x a m p l e  2 . 2

Find the equation for LST at local solar noon for Nicosia, Cyprus.

Solution
For the location of Nicosia, Cyprus, from Example 2.1,

LST ET  min  12 13 32. [ ]

E x a m p l e  2 . 3

Calculate the apparent solar time on March 10 at 2:30 pm for the city of Athens, 
Greece (23°40 E longitude).

Solution
The equation of time for March 10 (N  69) is calculated from Eq. (2.1), in which 
the factor B is obtained from Eq. (2.2) as

              B N     360 364 81 360 364 69 81 11 87/ ( ) / ( ) .
ET   

   
9 87 2 7 53 1 5
9 87 2 11 87 7 53
. sin( ) . cos( ) . sin( )
. sin( . ) .

B B B
ccos( . ) . cos( . )  11 87 1 5 11 87

Therefore,

ET min  min  12 8 13. ∼

The standard meridian for Athens is 30°E longitude. Therefore, the apparent solar 
time at 2:30 pm, from Eq. (2.3), is

AST
 or p

      


14 30 4 30 23 66 0 13 14 30 0 25 0 13
14 42 2 42

: ( . ) : : : :
: , : mm
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Solar altitude angle, 
The solar altitude angle is the angle between the sun’s rays and a horizontal 
plane, as shown in Figure 2.8. It is related to the solar zenith angle, , which is 
the angle between the sun’s rays and the vertical. Therefore,

	 Φ α π   / 2 90 	 (2.11)

The mathematical expression for the solar altitude angle is

	 sin( ) cos( ) sin( ) sin( ) cos( ) cos( ) cos( )α δ δ  Φ L L h 	 (2.12)

where L  local latitude, defined as the angle between a line from the center 
of the earth to the site of interest and the equatorial plane. Values north of the 
equator are positive and those south are negative.

Solar azimuth angle, z
The solar azimuth angle, z, is the angle of the sun’s rays measured in the hori-
zontal plane from due south (true south) for the Northern Hemisphere or due 
north for the Southern Hemisphere; westward is designated as positive. The 
mathematical expression for the solar azimuth angle is

	
sin( )

cos( )sin( )

cos( )
z

h


δ
α

	 (2.13)

This equation is correct, provided that (ASHRAE, 1975) cos(h)  tan()/tan(L). 
If not, it means that the sun is behind the E-W line, as shown in Figure 2.4, and 
the azimuth angle for the morning hours is   |z| and for the afternoon hours 
is   z.

At solar noon, by definition, the sun is exactly on the meridian, which con-
tains the north-south line, and consequently, the solar azimuth is 0°. Therefore 
the noon altitude n is

	 α δn L   90 	 (2.14)

z N

E

W

S

Φ
α

Horizon

Center of earth

Sun Sun’s daily path

Figure 2.8  Apparent daily path of the sun across the sky from sunrise to sunset.
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E x a m p l e  2 . 4

What are the maximum and minimum noon altitude angles for a location at 
40° latitude?

Solution
The maximum angle is at summer solstice, where  is maximum, i.e., 23.5°. 
Therefore, the maximum noon altitude angle is 90°  40°  23.5°  73.5°.

The minimum noon altitude angle is at winter solstice, where  is mini-
mum, i.e., 23.5°. Therefore, the minimum noon altitude angle is 90°  40° 
 ���������������23.5°  26.5°.

Sunrise and sunset times and day length
The sun is said to rise and set when the solar altitude angle is 0. So, the hour 
angle at sunset, hss, can be found by solving Eq. (2.12) for h when   0°:

sin( ) sin( ) sin( )sin( ) cos( )cos( )cos( )α δ    0 0 L L hss

or

cos( )
sin( )sin( )

cos( )cos( )
h

L

Lss  
δ
δ

which reduces to

	 cos( ) tan( ) tan( )h Lss   δ 	 (2.15)

where hss is taken as positive at sunset.
Since the hour angle at local solar noon is 0°, with each 15° of longitude 

equivalent to 1 h, the sunrise and sunset time in hours from local solar noon is 
then

	 H H Lss sr   1 15 1/ cos [ tan( ) tan( )]δ 	 (2.16)

The sunrise and sunset hour angles for various latitudes are shown in 
Figure A3.1 in Appendix 3.

The day length is twice the sunset hour, since the solar noon is at the mid-
dle of the sunrise and sunset hours. Therefore, the length of the day in hours is

	 Day length  2 15 1/ cos [ tan( ) tan( )]L δ 	 (2.17)

E x a m p l e  2 . 5

Find the equation for sunset standard time for Nicosia, Cyprus.

Solution
The local standard time at sunset for the location of Nicosia, Cyprus, from  
Example 2.1 is

Sunset standard time H ET  ss   13 32. (min)



60  Environmental Characteristics
E x a m p l e  2 . 6

Find the solar altitude and azimuth angles at 2 h after local noon on June 15 for 
a city located at 40°N latitude. Also find the sunrise and sunset hours and the 
day length.

Solution
From Eq. (2.5), the declination on June 15 (N  167) is

δ    23 45
360

365
284 167 23 35. sin ( ) .













From Eq. (2.8), the hour angle, 2 h after local solar noon is

h    0 25 120 30. ( )

From Eq. (2.12), the solar altitude angle is

sin( ) sin( ) sin( . ) cos( ) cos( . ) cos( ) .α   40 23 35 40 23 35 30 0 864

Therefore,

α  59 75.

From Eq. (2.13), the solar azimuth angle is

sin( ) cos( . )
sin( )

cos( . )
.z  23 35

30

59 75
0 911

Therefore,

z  65 67.

From Eq. (2.17), the day length is

Day length  h  2 15 40 23 35 14 831/ cos [ tan( ) tan( . )] .

This means that the sun rises at 12  7.4  4.6  4:36 am solar time and sets 
at 7.4  7:24 pm solar time.

Incidence angle, 
The solar incidence angle, , is the angle between the sun’s rays and the nor-
mal on a surface. For a horizontal plane, the incidence angle, , and the zenith 
angle, , are the same. The angles shown in Figure 2.9 are related to the basic 
angles, shown in Figure 2.5, with the following general expression for the angle 
of incidence (Kreith and Kreider, 1978; Duffie and Beckman, 1991):

cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( ) cos( )θ δ β δ β   

      

L L Zs

             cos( ) cos( ) cos( ) cos( ) sin( ) cos( ) cos( ) siL h L hδ β δ nn( ) cos( )
cos( ) sin( ) sin( ) sin( )

β
δ β

Z
h Z

s

s                                                                        ( . )2 18
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where
   surface tilt angle from the horizontal
Zs  surface azimuth angle, the angle between the normal to the surface from 
true south, westward is designated as positive

For certain cases Eq. (2.18) reduces to much simpler forms:

n	 For horizontal surfaces,   0° and   , and Eq. (2.18) reduces to 
Eq. (2.12).

n	 For vertical surfaces,   90° and Eq. (2.18) becomes

cos( ) cos( )sin( )cos( ) sin( )cos( )cos( )cos( )
co

θ δ δ  

  

L Z L hs sZ
ss( )sin( )sin( )δ h sZ 	 (2.19)

n	 For a south-facing, tilted surface in the Northern Hemisphere, 
Zs  0° and Eq. (2.18) reduces to

cos( ) sin( ) sin( ) cos( ) cos( ) sin( ) sin( )θ δ β δ β 

              

L L
    

                 

cos( ) cos( ) cos( ) cos( )
sin( ) cos(

L h
L

δ β
δ)) cos( ) sin( )h β

which can be further reduced to

cos( ) sin( ) sin( ) cos( ) cos( ) cos( )θ β δ β δ   L L h 	 (2.20)

n	 For a north-facing, tilted surface in the Southern Hemisphere, 
Zs  180° and Eq. (2.18) reduces to

cos( ) sin( ) sin( ) cos( ) cos( ) cos( )θ β δ β δ   L L h 	 (2.21)

Equation (2.18) is a general relationship for the angle of incidence on a sur-
face of any orientation. As shown in Eqs. (2.19)–(2.21), it can be reduced to 
much simpler forms for specific cases.
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E x a m p l e  2 . 7

A surface tilted 45° from horizontal and pointed 10° west of due south is located 
at 35°N latitude. Calculate the incident angle at 2 h after local noon on June 15.

Solution
From Example 2.6 we have   23.35° and the hour angle  30°. The solar 
incidence angle  is calculated from Eq. (2.18):

cos( ) sin( )sin( . )cos( ) cos( )sin( . )sin( )coθ  35 23 35 45 35 23 35 45 ss( )
cos( )cos( . )cos( )cos( )
sin( )cos( .

10
35 23 35 30 45
35 23

   
   335 30 45 10

23 35 30 45 1
)cos( )sin( )cos( )

cos( . )sin( )sin( )sin(   00
0 769

)
.

Therefore,

θ  39 72.

2.2.1  The Incidence Angle for Moving Surfaces
For the case of solar-concentrating collectors, some form of tracking mechanism 
is usually employed to enable the collector to follow the sun. This is done with 
varying degrees of accuracy and modes of tracking, as indicated in Figure 2.10.

Tracking systems can be classified by the mode of their motion. This can be 
about a single axis or about two axes (Figure 2.10a). In the case of a single-axis 
mode, the motion can be in various ways: east-west (Figure 2.10d), north-south 
(Figure 2.10c), or parallel to the earth’s axis (Figure 2.10b). The following equa-
tions are derived from the general equation (2.18) and apply to planes moved, as 
indicated in each case. The amount of energy falling on a surface per unit area 
for the summer and winter solstices and the equinoxes for latitude of 35° N is 
investigated for each mode. This analysis has been performed with a radiation 
model. This is affected by the incidence angle, which is different for each mode. 
The type of model used here is not important, since it is used for comparison 
purposes only.

Full tracking
For a two-axis tracking mechanism, keeping the surface in question continu-
ously oriented to face the sun (see Figure 2.10a) at all times has an angle of 
incidence, , equal to

	 cos( )θ  1 	 (2.22)

or   0°. This, of course, depends on the accuracy of the mechanism. The 
full tracking configuration collects the maximum possible sunshine. The per-
formance of this mode of tracking with respect to the amount of radiation col-
lected during one day under standard conditions is shown in Figure 2.11.
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The slope of this surface () is equal to the solar zenith angle (), and the 
surface azimuth angle (Zs) is equal to the solar azimuth angle (z).

Tilted N-S axis with tilt adjusted daily
For a plane moved about a north-south axis with a single daily adjustment so 
that its surface normal coincides with the solar beam at noon each day,  is 
equal to (Meinel and Meinel, 1976; Duffie and Beckman, 1991)

	 cos sin cos cos( ) ( ) ( ) ( )2θ δ δ 2 h 	 (2.23)

For this mode of tracking, we can accept that, when the sun is at noon, the 
angle of the sun’s rays and the normal to the collector can be up to a 4° declina-
tion, since for small angles cos(4°)  0.9981. Figure 2.12 shows the number 
of consecutive days that the sun remains within this 4° “declination window” at 
noon. As can be seen in Figure 2.12, most of the time the sun remains close to 
either the summer solstice or the winter solstice, moving rapidly between the 
two extremes. For nearly 70 consecutive days, the sun is within 4° of an extreme 
position, spending only nine days in the 4° window, at the equinox. This means 
that a seasonally tilted collector needs to be adjusted only occasionally.

The problem encountered with this and all tilted collectors, when more than 
one collector is used, is that the front collectors cast shadows on adjacent ones. 
This means that, in terms of land utilization, these collectors lose some of their 
benefits when the cost of land is taken into account. The performance of this 
mode of tracking (see Figure 2.13) shows the peaked curves typical for this 
assembly.

Polar N-S axis with E-W tracking
For a plane rotated about a north-south axis parallel to the earth’s axis, with 
continuous adjustment,  is equal to

	 cos( ) cos( )θ δ 	 (2.24)
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This configuration is shown in Figure 2.10b. As can be seen, the collec-
tor axis is tilted at the polar axis, which is equal to the local latitude. For this 
arrangement, the sun is normal to the collector at equinoxes (  0°) and the 
cosine effect is maximum at the solstices. The same comments about the tilting 
of the collector and shadowing effects apply here as in the previous configura-
tion. The performance of this mount is shown in Figure 2.14.

The equinox and summer solstice performance, in terms of solar radiation 
collected, are essentially equal; i.e., the smaller air mass for summer solstice 
offsets the small cosine projection effect. The winter noon value, however, is 
reduced because these two effects combine. If it is desired to increase the win-
ter performance, an inclination higher than the local latitude would be required; 
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but the physical height of such configuration would be a potential penalty to be 
traded off in cost effectiveness with the structure of the polar mount. Another 
side effect of increased inclination is shadowing by the adjacent collectors, for 
multi-row installations.

The slope of the surface varies continuously and is given by

	
tan( )

tan( )

cos( )
β 

L

Zs

	 (2.25a)

The surface azimuth angle is given by

	
Z

z

L
C Cs 


tan

sin( )sin( )

cos( )sin( )
1

1 2180
Φ
θ

	 (2.25b)

where

	 cos( ) cos( ) cos( ) sin( ) sin( ) cos( )θ Φ  L L zΦ 	 (2.25c)
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	 (2.25e)

Horizontal E-W axis with N-S tracking
For a plane rotated about a horizontal east-west axis with continuous adjust-
ment to minimize the angle of incidence,  can be obtained from (Kreith and 
Kreider, 1978; Duffie and Beckman, 1991),

	 cos( ) cos ( )sin ( )θ δ 1 2 2 h 	 (2.26a)

or from this equation (Meinel and Meinel, 1976):

	 cos( ) sin ( ) cos ( )cos ( )θ δ δ 2 2 2 h 	 (2.26b)

The basic geometry of this configuration is shown in Figure 2.10c. The 
shadowing effects of this arrangement are minimal. The principal shadowing is 
caused when the collector is tipped to a maximum degree south (  23.5°) at 
winter solstice. In this case, the sun casts a shadow toward the collector at the 
north. This assembly has an advantage in that it approximates the full tracking 
collector in summer (see Figure 2.15), but the cosine effect in winter greatly 
reduces its effectiveness. This mount yields a rather “square” profile of solar 
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radiation, ideal for leveling the variation during the day. The winter perfor-
mance, however, is seriously depressed relative to the summer one.

The slope of this surface is given by

	 tan( ) tan( ) cos( )β Φ | |z 	 (2.27a)

The surface orientation for this mode of tracking changes between 0° and 
180°, if the solar azimuth angle passes through 90°. For either hemisphere,

	

If | |
If | |

z Z
z Z

s

s

   

  

90 0
90 180

,
,> 	 (2.27b)

Horizontal N-S axis with E-W tracking
For a plane rotated about a horizontal north-south axis with continuous adjust-
ment to minimize the angle of incidence,  can be obtained from (Kreith and 
Kreider, 1978; Duffie and Beckman, 1991)

	 cos( ) sin ( ) cos ( )sin ( )θ α δ 2 2 2 h 	 (2.28a)

or from this equation (Meinel and Meinel, 1976):

	 cos( ) cos( )cos( ) cos( ) sin ( )θ δ Φ h h2 	 (2.28b)

The basic geometry of this configuration is shown in Figure 2.10d. The 
greatest advantage of this arrangement is that very small shadowing effects are 
encountered when more than one collector is used. These are present only at 
the first and last hours of the day. In this case the curve of the solar energy col-
lected during the day is closer to a cosine curve function (see Figure 2.16).
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The slope of this surface is given by

	 tan( ) tan( )|cos( )β  Φ Z zs | 	 (2.29a)

The surface azimuth angle (Zs) is 90° or 90°, depending on the solar azimuth 
angle:

	

If  
If  

z Z
z Z

s

s

   

    

0 90
0 90

,
, 	 (2.29b)

Comparison
The mode of tracking affects the amount of incident radiation falling on the col-
lector surface in proportion to the cosine of the incidence angle. The amount of 
energy falling on a surface per unit area for the four modes of tracking for the 
summer and winter solstices and the equinoxes are shown in Table 2.2. This 
analysis has been performed with the same radiation model used to plot the solar 
flux figures in this section. Again, the type of the model used here is not impor-
tant, because it is used for comparison purposes only. The performance of the  
various modes of tracking is compared to the full tracking, which collects  
the maximum amount of solar energy, shown as 100% in Table 2.2. From this table  
it is obvious that the polar and the N-S horizontal modes are the most suitable 
for one-axis tracking, since their performance is very close to the full tracking, 
provided that the low winter performance of the latter is not a problem.

2.2.2  Sun path diagrams
For practical purposes, instead of using the preceding equations, ����������  it is con-
venient�����������������������������������������������������������������             to have the sun’s path plotted on a horizontal plane, called a sun path  
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Figure 2.16  Daily variation of solar flux: horizontal N-S axis and E-W tracking.
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diagram, and to use the diagram to find the position of the sun in the sky at 
any time of the year. As can be seen from Eqs. (2.12) and (2.13), the solar alti-
tude angle, , and the solar azimuth angle, z, are functions of latitude, L, hour 
angle, h, and declination, . In a two-dimensional plot, only two independent 
parameters can be used to correlate the other parameters; therefore, it is usual 
to plot different sun path diagrams for different latitudes. Such diagrams show 
the complete variations of hour angle and declination for a full year. Figure 
2.17 shows the sun path diagram for 35°N latitude. Lines of constant declina-
tion are labeled by the value of the angles. Points of constant hour angles are 
clearly indicated. This figure is used in combination with Figure 2.7 or Eqs. 
(2.5)–(2.7); i.e., for a day in a year, Figure 2.7 or the equations can be used to 
estimate declination, which is then entered together with the time of day and 
converted to solar time using Eq. (2.3) in Figure 2.17 to estimate solar alti-
tude and azimuth angles. It should be noted that Figure 2.17 applies for the 
Northern Hemisphere. For the Southern Hemisphere, the sign of the declina-
tion should be reversed. Figures A3.2 through A3.4 in Appendix 3 show the 
sun path diagrams for 30°, 40°, and 50°N latitudes.

Table 2.2  Comparison of Energy Received for Various Modes of Tracking

Tracking mode Solar energy received (kWh/m2) Percentage to full tracking

E SS WS E SS WS

Full tracking 8.43 10.60 5.70 100 100 100

E-W polar 8.43 9.73 5.23 100 91.7 91.7

N-S horizontal 7.51 10.36 4.47 89.1 97.7 60.9

E-W horizontal 6.22 7.85 4.91 73.8 74.0 86.2

Notes: E  equinoxes, SS  summer solstice, WS  winter solstice.
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2.2.3  Shadow determination
In the design of many solar energy systems, it is often required to estimate the 
possibility of the shading of solar collectors or the windows of a building by 
surrounding structures. To determine the shading, it is necessary to know the 
shadow cast as a function of time during every day of the year. Although math-
ematical models can be used for this purpose, a simpler graphical method is 
presented here, which is suitable for quick, practical applications. This method 
is usually sufficient, since the objective is usually not to estimate exactly the 
amount of shading but to determine whether a position suggested for the place-
ment of collectors is suitable or not.

Shadow determination is facilitated by the determination of a surface- 
oriented solar angle, called the solar profile angle. As shown in Figure 2.18, 
the solar profile angle, p, is the angle between the normal to a surface and the 
projection of the sun’s rays on a plane normal to the surface. In terms of the 
solar altitude angle, , solar azimuth angle, z, and the surface azimuth angle, 
Zs, the solar profile angle p is given by the equation

	
tan( )

tan( )

cos( )
p

z Zs




α
	 (2.30a)

A simplified equation is obtained when the surface faces due south, i.e., 
Zs  0°, given by

	
tan( )

tan( )

cos( )
p

z


α 	 (2.30b)

The sun path diagram is often very useful in determining the period of the 
year and hours of day when shading will take place at a particular location. 
This is illustrated in the following example.

Normal to surface

Sun

α

South

p

Overhang

Window

Horizontal plane
Zs

z

Shadow

Figure 2.18  Geometry of solar profile angle, p, in a window overhang arrangement.
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E x a m p l e  2 . 8

A building is located at 35°N latitude and its side of interest is located 15° east 
of south. We want to investigate the time of the year that point x on the build-
ing will be shaded, as shown in Figure 2.19.

Solution
The upper limit of profile angle for shading point x is 35° and 15° west of true 
south. This is point A drawn on the sun path diagram, as shown in Figure 2.20. 
In this case, the solar profile angle is the solar altitude angle. Distance x–B is 
(72  122)1/2  13.9 m. For the point B, the altitude angle is tan()  8/13.9 
→   29.9°. Similarly, distance x–C is (42  122)1/2  12.6 m, and for point 
C, the altitude angle is tan()  8/12.6 →   32.4°. Both points are as indi-
cated on the sun path diagram in Figure 2.20.
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Figure 2.19  Shading of building in Example 2.8.
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Therefore, point x on the wall of interest is shaded during the period indicated 
by the curve BAC in Figure 2.20. It is straightforward to determine the hours 
that shading occurs, whereas the time of year is determined by the declination.

Solar collectors are usually installed in multi-rows facing the true south. 
There is, hence, a need to estimate the possibility of shading by the front rows 
of the second and subsequent rows. The maximum shading, in this case, occurs 
at local solar noon, and this can easily be estimated by finding the noon alti-
tude, n, as given by Eq. (2.14) and checking whether the shadow formed 
shades the second or subsequent collector rows.

E x a m p l e  2 . 9

Find the equation to estimate the shading caused by a fin on a window.

Solution
The fin and window assembly are shown in Figure 2.21.

From triangle ABC, the sides AB  D, BC  w, and angle A is z – Zs.
Therefore, distance w is estimated by w  D tan(z – Zs).

Shadow calculations for overhangs are examined in more detail in Chapter 
6, Section 6.2.5.

2.3  Solar radiation
2.3.1  General
All substances, solid bodies as well as liquids and gases above the absolute 
zero temperature, emit energy in the form of electromagnetic waves.

The radiation that is important to solar energy applications is that emitted 
by the sun within the ultraviolet, visible, and infrared regions. Therefore, the 

Fin, 
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Window
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Perpendicular to window

z

C
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Figure 2.21  Fin and window assembly for Example 2.9.
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radiation wavelength that is important to solar energy applications is between 
0.15 and 3.0 m. The wavelengths in the visible region lie between 0.38 and 
0.72 m.

This section initially examines issues related to thermal radiation, which 
includes basic concepts, radiation from real surfaces, and radiation exchanges 
between two surfaces. This is followed by the variation of extraterrestrial radia-
tion, atmospheric attenuation, terrestrial irradiation, and total radiation received 
on sloped surfaces. Finally, it briefly ������������������������������������������   describes ��������������������������������  radiation measuring equipment.

2.3.2  Thermal radiation
Thermal radiation is a form of energy emission and transmission that depends 
entirely on the temperature characteristics of the emissive surface. There is no 
intervening carrier, as in the other modes of heat transmission, i.e., conduction 
and convection. Thermal radiation is in fact an electromagnetic wave that travels 
at the speed of light (C  300,000 km/s in a vacuum). This speed is related to 
the wavelength () and frequency () of the radiation as given by the equation:

	 C v λ 	 (2.31)

When a beam of thermal radiation is incident on the surface of a body, part 
of it is reflected away from the surface, part is absorbed by the body, and part 
is transmitted through the body. The various properties associated with this 
phenomenon are the fraction of radiation reflected, called reflectivity (); the 
fraction of radiation absorbed, called absorptivity (); and the fraction of radi-
ation transmitted, called transmissivity (). The three quantities are related by 
the following equation:

	 ρ α τ   1 	 (2.32)

It should be noted that the radiation properties just defined are not only 
functions of the surface itself but also of the direction and wavelength of the 
incident radiation. Therefore, Eq. (2.32) is valid for the average properties over 
the entire wavelength spectrum. The following equation is used to express the 
dependence of these properties on the wavelength:

	 ρ α τλ λ λ   1 	 (2.33)

where
   spectral reflectivity.
  spectral absorptivity.
   spectral transmissivity.

The angular variation of absorptance for black paint is illustrated in Table 
2.3 for incidence angles of 0–90°. The absorptance for diffuse radiation is 
approximately 0.90 (Löf and Tybout, 1972).

Most solid bodies are opaque, so that   0 and     1. If a body 
absorbs all the impinging thermal radiation such that   0,   0, and   1, 
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regardless of the spectral character or directional preference of the incident 
radiation, it is called a blackbody. This is a hypothetical idealization that does 
not exist in reality.

A blackbody is not only a perfect absorber, it is also characterized by an 
upper limit to the emission of thermal radiation. The energy emitted by a black-
body is a function of its temperature and is not evenly distributed over all wave-
lengths. The rate of energy emission per unit area at a particular wavelength is 
termed the monochromatic emissive power. Max Planck was the first to derive 
a functional relation for the monochromatic emissive power of a blackbody in 
terms of temperature and wavelength. This was done by using the quantum the-
ory, and the resulting equation, called Planck’s equation for blackbody radiation, 
is given by

	

E
C

e
b C Tλ

λ




1
5 2 1/λ( )

	 (2.34)

where
Eb  monochromatic emissive power of a blackbody (W/m2-m).
T   temperature of the body (K).
   wavelength (m).
C1   constant  3.74  108 W-m4/m2.
C2   constant  1.44  104 m-K.

By differentiating Eq. (2.34) and equating to 0, the wavelength cor-
responding to the maximum of the distribution can be obtained and is equal 
to maxT  2897.8 m-K. This is known as Wien’s displacement law. Figure 
2.22 shows the spectral radiation distribution for blackbody radiation at  
three temperature sources. The curves have been obtained by using the Planck’s 
equation.

Table 2.3  Angular Variation of Absorptance 
for Black Paint (Reprinted from Löf and Tybout 
(1972) with Permission from ASME).

Angle of incidence (°) Absorptance

0–30 0.96

30–40 0.95

40–50 0.93

50–60 0.91

60–70 0.88

70–80 0.81

80–90 0.66
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The total emissive power, Eb, and the monochromatic emissive power, Eb, 
of a blackbody are related by

	

E E db b λ λ
0

∞

∫ 	 (2.35)

Substituting Eq. (2.34) into Eq. (2.35) and performing the integration 
results in the Stefan-Boltzmann law:

	 E Tb  σ 4 	 (2.36a)

where   the Stefan-Boltzmann constant  5.6697  108 W/m2K4.
In many cases, it is necessary to know the amount of radiation emitted by a 

blackbody in a specific wavelength band 1 → 2. This is done by modifying 
Eq. (2.35) as

	

E E db b( )0 → ∫λ  λ
0

λ

λ 	 (2.36b)

Since the value of Eb depends on both  and T, it is better to use both vari-
ables as

	

E T
E

T
d Tb

b
T

( )0
0

→ ∫λ
λ

 λ λ 	 (2.36c)

Therefore, for the wavelength band of 1 → 2, we get

	

E T T
E

T
d Tb

b

T

T

( )λ λ λλ

λ

λ

1 2

1

2

→ ∫ 	 (2.36d)

which results in Eb(0 → 1T)  Eb (0 → 2T). Table 2.4 presents a tabulation 
of Eb(0 → T) as a fraction of the total emissive power, Eb  T4, for various 
values of T. The values are not rounded, because the original table, suggested 
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Figure 2.22  Spectral distribution of blackbody radiation.
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by Dunkle (1954), recorded T in micrometer-degrees Rankine (m-°R), 
which were converted to micrometer-Kelvins (m-K) in Table 2.4.

A blackbody is also a perfect diffuse emitter, so its intensity of radiation, 
Ib, is a constant in all directions, given by

	 E Ib b π 	 (2.37)

Of course, real surfaces emit less energy than corresponding blackbodies. 
The ratio of the total emissive power, E, of a real surface to the total emissive 
power, Eb, of a blackbody, both at the same temperature, is called the emissivity 
() of a real surface; that is,

	
ε 

E

Eb
	 (2.38)

The emissivity of a surface is not only a function of surface temperature 
but depends also on wavelength and direction. In fact, the emissivity given by 
Eq. (2.38) is the average value over the entire wavelength range in all direc-
tions, and it is often referred as the total or hemispherical emissivity. Similar 
to Eq. (2.38), to express the dependence on wavelength, the monochromatic or 
spectral emissivity, , is defined as the ratio of the monochromatic emissive 
power, E, of a real surface to the monochromatic emissive power, Eb, of a 
blackbody, both at the same wavelength and temperature:

	
ε λ

λ
λ 

E

Eb

	 (2.39)

Kirchoff’s law of radiation states that, for any surface in thermal equilib-
rium, monochromatic emissivity is equal to monochromatic absorptivity:

	 ε αλ λ( ) ( )T T 	 (2.40)

The temperature (T) is used in Eq. (2.40) to emphasize that this equation 
applies only when the temperatures of the source of the incident radiation and 
the body itself are the same. It should be noted, therefore, that the emissivity 
of a body on earth (at normal temperature) cannot be equal to solar radiation 
(emitted from the sun at T  5760 K). Equation (2.40) can be generalized as

	 ε α( ) ( )T T 	 (2.41)

Equation (2.41) relates the total emissivity and absorptivity over the entire 
wavelength. This generalization, however, is strictly valid only if the incident 
and emitted radiation have, in addition to the temperature equilibrium at the 
surfaces, the same spectral distribution. Such conditions are rarely met in real 
life; to simplify the analysis of radiation problems, however, the assumption 
that monochromatic properties are constant over all wavelengths is often made. 
Such a body with these characteristics is called a graybody.
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Table 2.4  Fraction of Blackbody Radiation as a Function of T

T (m-K) Eb(0 → 
T)/T4

T (m-K) Eb(0 → 
T)/T4

T (m-K) Eb(0 → 
T)/T4

555.6 1.70E–08 4000.0 0.48085 7444.4 0.83166

666.7 7.56E–07 4111.1 0.50066 7555.6 0.83698

777.8 1.06E–05 4222.2 0.51974 7666.7 0.84209

888.9 7.38E–05 4333.3 0.53809 7777.8 0.84699

1000.0 3.21E–04 4444.4 0.55573 7888.9 0.85171

1111.1 0.00101 4555.6 0.57267 8000.0 0.85624

1222.2 0.00252 4666.7 0.58891 8111.1 0.86059

1333.3 0.00531 4777.8 0.60449 8222.2 0.86477

1444.4 0.00983 4888.9 0.61941 8333.3 0.86880

1555.6 0.01643 5000.0 0.63371 8888.9 0.88677

1666.7 0.02537 5111.1 0.64740 9444.4 0.90168

1777.8 0.03677 5222.2 0.66051 10000.0 0.91414

1888.9 0.05059 5333.3 0.67305 10555.6 0.92462

2000.0 0.06672 5444.4 0.68506 11111.1 0.93349

2111.1 0.08496 5555.6 0.69655 11666.7 0.94104

2222.2 0.10503 5666.7 0.70754 12222.2 0.94751

2333.3 0.12665 5777.8 0.71806 12777.8 0.95307

2444.4 0.14953 5888.9 0.72813 13333.3 0.95788

2555.5 0.17337 6000.0 0.73777 13888.9 0.96207

2666.7 0.19789 6111.1 0.74700 14444.4 0.96572

2777.8 0.22285 6222.1 0.75583 15000.0 0.96892

2888.9 0.24803 6333.3 0.76429 15555.6 0.97174

3000.0 0.27322 6444.4 0.77238 16111.1 0.97423

3111.1 0.29825 6555.6 0.78014 16666.7 0.97644

3222.2 0.32300 6666.7 0.78757 22222.2 0.98915

3333.3 0.34734 6777.8 0.79469 22777.8 0.99414

3444.4 0.37118 6888.9 0.80152 33333.3 0.99649

3555.6 0.39445 7000.0 0.80806 33888.9 0.99773

3666.7 0.41708 7111.1 0.81433 44444.4 0.99845

3777.8 0.43905 7222.2 0.82035 50000.0 0.99889

3888.9 0.46031 7333.3 0.82612 55555.6 0.99918
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Similar to Eq. (2.37) for a real surface, the radiant energy leaving the sur-
face includes its original emission and any reflected rays. The rate of total radi-
ant energy leaving a surface per unit surface area is called the radiosity (J), 
given by

	 J E Hb ε ρ 	 (2.42)

where
Eb  blackbody emissive power per unit surface area (W/m2).
H   irradiation incident on the surface per unit surface area (W/m2).
   emissivity of the surface.
   reflectivity of the surface.

There are two idealized limiting cases of radiation reflection: the reflection 
is called specular if the reflected ray leaves at an angle with the normal to the 
surface equal to the angle made by the incident ray, and it is called diffuse if 
the incident ray is reflected uniformly in all directions. Real surfaces are nei-
ther perfectly specular nor perfectly diffuse. Rough industrial surfaces, how-
ever, are often considered as diffuse reflectors in engineering calculations.

A real surface is both a diffuse emitter and a diffuse reflector and hence, it 
has diffuse radiosity; i.e., the intensity of radiation from this surface (I) is con-
stant in all directions. Therefore, the following equation is used for a real surface:

	 J I π 	 (2.43)

E x a m p l e  2 . 1 0

A glass with transmissivity of 0.92 is used in a certain application for wavelengths 
0.3 and 3.0 m. The glass is opaque to all other wavelengths. Assuming that the 
sun is a blackbody at 5760 K and neglecting atmospheric attenuation, determine 
the percent of incident solar energy transmitted through the glass. If the interior 
of the application is assumed to be a blackbody at 373 K, determine the percent of 
radiation emitted from the interior and transmitted out through the glass.

Solution
For the incoming solar radiation at 5760 K, we have

λ1T   0 3 5760 1728. µm-K

λ2 3 5760 17280T    µm-K

From Table 2.4 by interpolation, we get

E T

T
b ( )

. . %
0

0 0317 3 17
4

→ 1λ

σ
 

E T

T
b ( )

. . %
0

0 9778 97 782
4

→ λ

σ
 
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Therefore, the percent of solar radiation incident on the glass in the wavelength 
range 0.3–3 m is

E T T

T
b ( )

. . . %
λ λ

σ
1 2

4
97 78 3 17 94 61

→
  

In addition, the percentage of radiation transmitted through the glass is 0.92  
94.61 87.04%.

For the outgoing infrared radiation at 373 K, we have

  λ µ1 0 3 373 111 9T   . . m-K

λ µ2 3 373 1119 0T    . m-K

From Table 2.4, we get

                                               

E T

T
b ( )

. %
0

0 0 01
4

→ λ

σ
 

E T

T
b ( )

. . %
0

0 00101 0 12
4

→ λ

σ
 

The percent of outgoing infrared radiation incident on the glass in the wave-
length 0.3–3 m is 0.1%, and the percent of this radiation transmitted out 
through the glass is only 0.92  0.1  0.092%. This example, in fact, dem-
onstrates the principle of the greenhouse effect; i.e., once the solar energy is 
absorbed by the interior objects, it is effectively trapped.

E x a m p l e  2 . 1 1

A surface has a spectral emissivity of 0.87 at wavelengths less than 1.5 m, 
0.65 at wavelengths between 1.5 and 2.5 m, and 0.4 at wavelengths longer 
than 2.5 m. If the surface is at 1000 K, determine the average emissivity over 
the entire wavelength and the total emissive power of the surface.

Solution
From the data given, we have

λ µ1 1 5 1000 1500T   . m-K

λ µ2 2 5 1000 2500T   . m-K

From Table 2.4 by interpolation, we get

E T

T
b ( )

.
0

0 013131
4

→ λ

σ


and

E T

T
b ( )

.
0

0 161442
4

→ λ

σ

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Therefore,

E T T

T
b ( )

. . .
λ λ

σ
1 2

4
0 16144 0 01313 0 14831

→
  

and
E T

T
b ( )

. .
λ

σ
2

4
1 0 16144 0 83856

→ ∞
  

The average emissive power over the entire wavelength is given by

ε       0 87 0 01313 0 65 0 14831 0 4 0 83856 0 4432. . . . . . .

and the total emissive power of the surface is

E T     εσ 4 8 4 20 4432 5 67 10 1000 25129 4. . . W/m

2.3.3  Transparent Plates
When a beam of radiation strikes the surface of a transparent plate at angle 1, 
called the incidence angle, as shown in Figure 2.23, part of the incident radia-
tion is reflected and the remainder is refracted, or bent, to angle 2, called the 
refraction angle, as it passes through the interface. Angle 1 is also equal to 
the angle at which the beam is specularly reflected from the surface. Angles 1 
and 2 are not equal when the density of the plane is different from that of the 
medium through which the radiation travels. Additionally, refraction causes the 
transmitted beam to be bent toward the perpendicular to the surface of higher 
density. The two angles are related by the Snell’s law:

	
n

n

n
 2

1

1

2

sin

sin

θ
θ

	 (2.44)

where n1 and n2 are the refraction indices and n is the ratio of refraction index 
for the two media forming the interface. The refraction index is the determining 
factor for the reflection losses at the interface. A typical value of the refraction  
index is 1.000 for air, 1.526 for glass, and 1.33 for water.

Incident beam

θ1

θ2

Transmitted beam

Reflected beam

n1

n2

Refracted beam

Medium 1

Medium 2

Figure 2.23  Incident and refraction angles for a beam passing from a medium with 
refraction index n1 to a medium with refraction index n2.
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Expressions for perpendicular and parallel components of radiation for 
smooth surfaces were derived by Fresnel as

	

r⊥ 




sin ( )

sin ( )

2
2 1

2
2 1

θ θ

θ θ
	 (2.45)

	

r 




tan ( )

tan ( )

2
2 1

2
2 1

θ θ

θ θ
	 (2.46)

Equation (2.45) represents the perpendicular component of unpolarized radia-
tion and Eq. (2.46) represents the parallel one. It should be noted that parallel 
and perpendicular refer to the plane defined by the incident beam and the sur-
face normal.

Properties are evaluated by calculating the average of these two compo-
nents as

	
r r r 

1

2
( )⊥  	 (2.47)

For normal incidence, both angles are 0 and Eq. (2.47) can be combined with 
Eq. (2.44) to yield
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



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	 (2.48)

If one medium is air (n  1.0), then Eq. (2.48) becomes
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n( )0

2
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1








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
 	 (2.49)

Similarly, the transmittance, r (subscript r indicates that only reflection losses 
are considered), can be calculated from the average transmittance of the two com-
ponents as follows:
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	 (2.50a)

For a glazing system of N covers of the same material, it can be proven that
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N r

r

N r



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	 (2.50b)

The transmittance, a (subscript  indicates that only absorption losses are con-
sidered), can be calculated from

	 τ θ
a

KL




e cos 2










	 (2.51)

where K is the extinction coefficient, which can vary from 4 m1 (for low-quality 
glass) to 32 m1 (for high-quality glass), and L is the thickness of the glass cover.



82  Environmental Characteristics
The transmittance, reflectance, and absorptance of a single cover (by consid-
ering both reflection and absorption losses) are given by the following expres-
sions. These expressions are for the perpendicular components of polarization, 
although the same relations can be used for the parallel components:
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	 (2.52c)

Since, for practical collector covers,  is seldom less than 0.9 and r is on 
the order of 0.1, the transmittance of a single cover becomes

	 τ τ τα≅ r 	 (2.53)

The absorptance of a cover can be approximated by neglecting the last term 
of Eq. (2.52c):

	 α τα≅ 1  	 (2.54)

and the reflectance of a single cover could be found (keeping in mind that 
  1    ) as

	 ρ τ τ τ τα α≅ ( )1   r 	 (2.55)

For a two-cover system of not necessarily same materials, the following 
equation can be obtained (subscript 1 refers to the outer cover and 2 to the inner 
one):
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E x a m p l e  2 . 1 2

A solar energy collector uses a single glass cover with a thickness of 4 mm. In the 
visible solar range, the refraction index of glass, n, is 1.526 and its extinction coef-
ficient K is 32 m1. Calculate the reflectivity, transmissivity, and absorptivity of 
the glass sheet for the angle of incidence of 60° and at normal incidence (0°).
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Solution
Angle of incidence  60°
From Eq. (2.44), the refraction angle 2 is calculated as

θ
θ

2
1 1 1 60

1 526
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From Eq. (2.51), the transmittance can be obtained as
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From Eqs. (2.45) and (2.46),
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From Eqs. (2.52a)–(2.52c), we have
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Normal incidence
At normal incidence, 1  0° and 2  0°. In this case,  is equal to 0.880. 
There is no polarization at normal incidence; therefore, from Eq. (2.49),
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From Eqs. (2.52a)–(2.52c), we have

	

τ τ
τ

α
α













1

1

1

1

0 880
1 0 043

1

0

0

0
2

0
2

r

r

r

r

( )

( )

( )

( )( )

.
.





















 0 043

1 0 043

1 0 043 0 880

2

2.

.

( . . )





























 0 807.

	

	
ρ τ τα     r( ) ( )( ) . ( . . ) .0 01 0 043 1 0 880 0 807 0 074

	

α τ
τα
α

 



 




( ) ( . )

.

.
( )

( )

1
1

1
1 0 880

1 0 043

1 0 0
0

0

r

r











 443 0 880
0 119




.
.









2.3.4  Radiation exchange between surfaces
When studying the radiant energy exchanged between two surfaces separated 
by a non-absorbing medium, one ��������������������������������������������      should consider ����������������������������    not only the temperature of 
the surfaces and their characteristics but also their geometric orientation with 
respect to each other. The effects of the geometry of radiant energy exchange 
can be analyzed conveniently by defining the term view factor, F12, to be the 
fraction of radiation leaving surface A1 that reaches surface A2. If both surfaces 
are black, the radiation leaving surface A1 and arriving at surface A2 is Eb1A1F12, 
and the radiation leaving surface A2 and arriving at surface A1 is Eb2A2F21. If 
both surfaces are black and absorb all incident radiation, the net radiation 
exchange is given by

	 Q E A F E A Fb b12 1 1 12 2 2 21  	 (2.58)

If both surfaces are of the same temperature, Eb1  Eb2 and Q12  0. 
Therefore,

	 A F A F1 12 2 21 	 (2.59)

It should be noted that Eq. (2.59) is strictly geometric in nature and valid for 
all diffuse emitters, irrespective of their temperatures. Therefore, the net radia-
tion exchange between two black surfaces is given by

	 Q A F E E A F E Eb b b b12 1 12 1 2 2 21 1 2   ( ) ( ) 	 (2.60)
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from Eq. (2.36), Eb  T4, Eq. (2.60) can be written as

	 Q A F T T A F T T12 1 12 1
4

2
4

2 21 1
4

2
4   σ σ( ) ( ) 	 (2.61)

where T1 and T2 are the temperatures of surfaces A1 and A2, respectively. 
As the term (Eb1 – Eb2) in Eq. (2.60) is the energy potential difference that 
causes the transfer of heat, in a network of electric circuit analogy, the term 
1/A1F12  1/A2F21 represents the resistance due to the geometric configuration 
of the two surfaces.

When surfaces other than black are involved in radiation exchange, the sit-
uation is much more complex, because multiple reflections from each surface 
must be taken into consideration. For the simple case of opaque gray surfaces, 
for which   , the reflectivity   1    1  . From Eq. (2.42), the 
radiosity of each surface is given by

	 J E H E Hb b    ε ρ ε ε(1 ) 	 (2.62)

The net radiant energy leaving the surface is the difference between the 
radiosity, J, leaving the surface and the irradiation, H, incident on the surface; 
that is,

	 Q A J H ( ) 	 (2.63)

Combining Eqs. (2.62) and (2.63) and eliminating irradiation H results in

	
Q A J

J E A
E Jb
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


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
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ε
ε

ε
ε1 1









 ( ) 	 (2.64)

Therefore, the net radiant energy leaving a gray surface can be regarded as the 
current in an equivalent electrical network when a potential difference (Eb – J) is 
overcome across a resistance (1 – )/A. This resistance is due to the imperfec-
tion of the surface as an emitter and absorber of radiation as compared to a black 
surface.

By considering the radiant energy exchange between two gray surfaces, A1 
and A2, the radiation leaving surface A1 and arriving at surface A2 is J1A1F12, 
where J is the radiosity, given by Eq. (2.42). Similarly, the radiation leav-
ing surface A2 and arriving surface A1 is J2A2F21. The net radiation exchange 
between the two surfaces is given by

	 Q J A F J A F A F J J A F J J12 1 1 12 2 2 21 1 12 1 2 2 21 1 2     ( ) ( ) 	 (2.65)

Therefore, due to the geometric orientation that applies between the two poten-
tials, J1 and J2, when two gray surfaces exchange radiant energy, the resistance 
1/A1F12  1/A2F21.

An equivalent electric network for two the gray surfaces is illustrated in 
Figure 2.24. By combining the surface resistance, (1 – )/A for each surface 
and the geometric resistance, 1/A1F12  1/A2F21, between the surfaces, as 
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shown in Figure 2.24, the net rate of radiation exchange between the two sur-
faces is equal to the overall potential difference divided by the sum of resis-
tances, given by
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In solar energy applications, the following geometric orientations between 
two surfaces are of particular interest.

A. For two infinite parallel surfaces, A1  A2  A and F12  1, Eq. (2.66) 
becomes
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2
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1 21 1 1
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ε ε

( )

( / ) ( / )
	 (2.67)

B. For two concentric cylinders, F12  1 and Eq. (2.66) becomes
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C. For a small convex surface, A1, completely enclosed by a very large con-
cave surface, A2, A1    A2 and F12  1, then Eq. (2.66) becomes

	 Q A T T12 1 1 1
4

2
4 ε σ( ) 	 (2.69)

The last equation also applies for a flat-plate collector cover radiating to the 
surroundings, whereas case B applies in the analysis of a parabolic trough col-
lector receiver where the receiver pipe is enclosed in a glass cylinder.

As can be seen from Eqs. (2.67)–(2.69), the rate of radiative heat trans-
fer between surfaces depends on the difference of the fourth power of the sur-
face temperatures. In many engineering calculations, however, the heat transfer 
equations are linearized in terms of the differences of temperatures to the first 
power. For this purpose, the following mathematical identity is used:
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Figure 2.24  Equivalent electrical network for radiation exchange between two gray 
surfaces.
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Therefore, Eq. (2.66) can be written as

	 Q A h T Tr12 1 1 2 ( ) 	 (2.71)

with the radiation heat transfer coefficient, hr, defined as
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For the special cases mentioned previously, the expressions for hr are as 
follows:

Case A:
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Case B:
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	 (2.74)

Case C:

	 h T T T Tr   ε σ1 1 2 1
2

2
2( )( ) 	 (2.75)

It should be noted that the use of these linearized radiation equations in terms 
of hr is very convenient when the equivalent network method is used to analyze 
problems involving conduction and/or convection in addition to radiation. The 
radiation heat transfer coefficient, hr, is treated similarly to the convection heat 
transfer coefficient, hc, in an electric equivalent circuit. In such a case, a com-
bined heat transfer coefficient can be used, given by

	 h h hc rcr   	 (2.76)

In this equation, it is assumed that the linear temperature difference between 
the ambient fluid and the walls of the enclosure and the surface and the enclo-
sure substances are at the same temperature.

E x a m p l e  2 . 1 3

The glass of a 1  2 m flat-plate solar collector is at a temperature of 80°C 
and has an emissivity of 0.90. The environment is at a temperature of 15°C. 
Calculate the convection and radiation heat losses if the convection heat trans-
fer coefficient is 5.1 W/m2K.
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Solution
In the following analysis, the glass cover is denoted by subscript 1 and the 
environment by 2. The radiation heat transfer coefficient is given by Eq. (2.75):

	

h T T T Tr   
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



ε σ1 1 2 1
2

2
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8 2 20 90 5 67 10 353 288 353 288

( )( )

. . ( )( )

66 789. W/m -K2
	

Therefore, from Eq. (2.76),

	 h h hc rcr
2W/m -K    5 1 6 789 11 889. . . 	

Finally,

Q A h T Tcr12 1 1 2 1 2 11 889 353 288 1545 6     ( ) ( )( . )( ) . W

2.3.5  Extraterrestrial Solar Radiation
The amount of solar energy per unit time, at the mean distance of the earth 
from the sun, received on a unit area of a surface normal to the sun (perpen-
dicular to the direction of propagation of the radiation) outside the atmosphere 
is called the solar constant, Gsc. This quantity is difficult to measure from the 
surface of the earth because of the effect of the atmosphere. A method for the 
determination of the solar constant was first given in 1881 �������������  by Langley ��(Garg, 
1982), who had given his name to the units of measurement as Langleys per 
minute (calories per square centimeter per minute). This was changed by the 
SI system to Watts per square meter (W/m2).

When the sun is closest to the earth, on January 3, the solar heat on the 
outer edge of the earth’s atmosphere is about 1400 W/m2; and when the sun is 
farthest away, on July 4, it is about 1330 W/m2.

Throughout the year, the extraterrestrial radiation measured on the plane 
normal to the radiation on the Nth day of the year, Gon, varies between these 
limits, as indicated in Figure 2.25, in the range of 3.3% and can be calculated 
by (Duffie and Beckman, 1991; Hsieh, 1986):
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where
Gon  �extraterrestrial radiation measured on the plane normal to the radiation 

on the Nth day of the year (W/m2).
Gsc  �solar constant (W/m2).

The latest value of Gsc is 1366.1 W/m2. This was adopted in 2000 by the 
American Society for Testing and Materials, which developed an AM0 refer-
ence spectrum (ASTM E-490). The ASTM E-490 Air Mass Zero solar spectral 
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irradiance is based on data from satellites, space shuttle missions, high-altitude 
aircraft, rocket soundings, ground-based solar telescopes, and modeled spec-
tral irradiance. The spectral distribution of extraterrestrial solar radiation at the 
mean sun-earth distance is shown in Figure 2.26. The spectrum curve of Figure 
2.26 is based on a set of data included in ASTM E-490 (Solar Spectra, 2007).

When a surface is placed parallel to the ground, the rate of solar radiation, 
GoH, incident on this extraterrestrial horizontal surface at a given time of the 
year is given by
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Figure 2.25  Variation of extraterrestrial solar radiation with the time of year.
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The total radiation, Ho, incident on an extraterrestrial horizontal surface 
during a day can be obtained by the integration of Eq. (2.78) over a period 
from sunrise to sunset. The resulting equation is
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where hss is the sunset hour in degrees, obtained from Eq. (2.15). The units of 
Eq. (2.79) are joules per square meter (J/m2).

To calculate the extraterrestrial radiation on a horizontal surface by an hour 
period, Eq. (2.78) is integrated between hour angles, h1 and h2 (h2 is larger). 
Therefore,
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	 (2.80)

It should be noted that the limits h1 and h2 may define a time period other  
than 1 h.

E x a m p l e  2 . 1 4

Determine the extraterrestrial normal radiation and the extraterrestrial radiation 
on a horizontal surface on March 10 at 2:00 pm solar time for 35°N latitude. 
Determine also the total solar radiation on the extraterrestrial horizontal sur-
face for the day.

Solution
The declination on March 10 (N  69) is calculated from Eq. (2.5):
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The hour angle at 2:00 pm solar time is calculated from Eq. (2.8):

h  0 25 0 25 120. ( ) . ( ) number of minutes from local solar noon  30

The hour angle at sunset is calculated from Eq. (2.15):

h Lss        cos [ tan( ) tan( )] cos [ tan( ) tan( . )] .1 1 35 4 8 86 6δ
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The extraterrestrial normal radiation is calculated from Eq. (2.77):
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The extraterrestrial radiation on a horizontal surface is calculated from Eq. (2.78):

        G G G L L hoH on on  cos( ) [sin( )sin( ) cos( )cos( )cos( )]Φ δ δ

                       1383 35 4 8 35 4 8 30 911[sin( )sin( . ) cos( )cos( . )cos( )] W/m2

The total radiation on the extraterrestrial horizontal surface is calculated from  
Eq. (2.79):
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A list of definitions that includes those related to solar radiation is found in 
Appendix 2. The reader should familiarize himself or herself with the various 
terms and specifically with irradiance, which is the rate of radiant energy falling 
on a surface per unit area of the surface (units, watts per square meter [W/m2] 
symbol, G), whereas irradiation is incident energy per unit area on a surface 
(units, joules per square meter [J/m2]), obtained by integrating irradiance over a 
specified time interval. Specifically, for solar irradiance this is called insolation. 
The symbols used in this book are H for insolation for a day and I for insolation 
for an hour. The appropriate subscripts used for G, H, and I are beam (B), dif-
fuse (D), and ground-reflected (G) radiation.

2.3.6  Atmospheric attenuation
The solar heat reaching the earth’s surface is reduced below Gon because a large 
part of it is scattered, reflected back out into space, and absorbed by the atmo-
sphere. As a result of the atmospheric interaction with the solar radiation, a 
portion of the originally collimated rays becomes scattered or non-directional. 
Some of this scattered radiation reaches the earth’s surface from the entire sky 
vault. This is called the diffuse radiation. The solar heat that comes directly 
through the atmosphere is termed direct or beam radiation. The insolation 
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received by a surface on earth is the sum of diffuse radiation and the normal 
component of beam radiation. The solar heat at any point on earth depends on

1.	 The ozone layer thickness
2.	 The distance traveled through the atmosphere to reach that point
3.	 The amount of haze in the air (dust particles, water vapor, etc.)
4.	 The extent of the cloud cover

The earth is surrounded by atmosphere that contains various gaseous constit-
uents, suspended dust, and other minute solid and liquid particulate matter and 
clouds of various types. As the solar radiation travels through the earth’s atmo-
sphere, waves of very short length, such as X rays and gamma rays, are absorbed 
in the ionosphere at extremely high altitude. The waves of relatively longer 
length, mostly in the ultraviolet range, are then absorbed by the layer of ozone 
(O3), located about 15–40 km above the earth’s surface. In the lower atmosphere, 
bands of solar radiation in the infrared range are absorbed by water vapor and 
carbon dioxide. In the long-wavelength region, since the extraterrestrial radiation 
is low and the H2O and CO2 absorption are strong, little solar energy reaches the 
ground.

Therefore, the solar radiation is depleted during its passage though the 
atmosphere before reaching the earth’s surface. The reduction of intensity with 
increasing zenith angle of the sun is generally assumed to be directly propor-
tional to the increase in air mass, an assumption that considers the atmosphere 
to be unstratified with regard to absorbing or scattering impurities.

The degree of attenuation of solar radiation traveling through the earth’s atmo-
sphere depends on the length of the path and the characteristics of the medium 
traversed. In solar radiation calculations, one standard air mass is defined as the 
length of the path traversed in reaching the sea level when the sun is at its zenith 
(the vertical at the point of observation). The air mass is related to the zenith 
angle,  (Figure 2.27), without considering the earth’s curvature, by the equation:

	
m

AB

BC
 

1

cos( )Φ
	 (2.81)

Therefore, at sea level when the sun is directly overhead, i.e., when   0°, 
m  1 (air mass one); and when   60°, we get m  2 (air mass two). 

Earth

Atmosphere 

Sun

B

C

A
Φ

Figure 2.27  Air mass definition.
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Similarly, the solar radiation outside the earth’s atmosphere is at air mass zero. 
The graph of direct normal irradiance at ground level for air mass 1.5 is shown 
in Appendix 4.

2.3.7  Terrestrial Irradiation
A solar system frequently needs to be judged on its long-term performance. 
Therefore, knowledge of long-term monthly average daily insolation data for 
the locality under consideration is required. Daily mean total solar radiation 
(beam plus diffuse) incident on a horizontal surface for each month of the year 
is available from various sources, such as radiation maps or a country’s meteo-
rological service (see Section 2.4). In these sources, data, such as 24 h aver-
age temperature, monthly average daily radiation on a horizontal surface H
(MJ/m2-d), and monthly average clearness index, KT, are given together with 
other parameters, which are not of interest here.2 The monthly average clear-
ness index, KT, is defined as

	
K

H

H
T

o
 	 (2.82)

where
H   �monthly average total insolation on a terrestrial horizontal surface 

(MJ/m2-d).
Ho  �monthly average daily total insolation on an extraterrestrial horizontal 

surface (MJ/m2).

The bar over the symbols signifies a long-term average. The value of Ho can 
be calculated from Eq. (2.79) by choosing a particular day of the year in the 
given month for which the daily total extraterrestrial insolation is estimated to be 
the same as the monthly mean value. Table 2.5 gives the values of Ho for each 
month as a function of latitude, together with the recommended dates of each 
month that would give the mean daily values of Ho. The day number and the 
declination of the day for the recommended dates are shown in Table 2.1. For 
the same days, the monthly average daily extraterrestrial insolation on a horizon-
tal surface for various months in kilowatt hours per square meter microns (kWh/
m2m) for latitudes 60° to 60° is also shown graphically in Figure A3.5 in 
Appendix 3, from which we can easily interpolate.

To predict the performance of a solar system, hourly values of radiation are 
required. Because in most cases these types of data are not available, long-term 
average daily radiation data can be utilized to estimate long-term average radia-
tion distribution. For this purpose, empirical correlations are usually used. Two 
such frequently used ����������������������  correlations ��������� are the Liu and Jordan (1977) correlation and 
the Collares-Pereira and Rabl (1979) correlation.

2 Meteorological data for various locations are shown in Appendix 7.
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g 16 Sept 15 Oct 15 Nov 14 Dec 10

7.8 16.7 28.1 38.4 43.6

0.7 19.5 30.2 39.4 43.9

3.6 22.2 32.1 40.3 44.2

6.5 24.7 33.8 41.1 44.4

9.3 27.1 35.3 41.6 44.4

2.0 29.2 36.5 41.9 44.2

4.5 31.1 37.5 41.9 43.7

6.9 32.8 38.1 41.6 43.0

9.1 34.2 38.5 41.1 42.0

1.1 35.4 38.7 40.3 40.8

2.8 36.3 38.5 39.3 39.3

4.4 36.9 38.1 37.9 37.6

5.7 37.2 37.3 36.4 35.6

6.7 37.3 36.3 34.5 33.5

7.5 37.0 35.1 32.5 31.1

8.0 36.5 33.5 30.2 28.5

8.2 35.7 31.8 27.7 25.7

8.2 34.7 29.8 25.1 22.9

7.9 33.4 27.5 22.3 19.9

7.3 31.8 25.1 19.4 16.8

6.5 30.0 22.5 16.4 13.7

5.4 27.9 19.8 13.4 10.7

4.1 25.7 16.9 10.4   7.7

2.7 23.2 13.9   7.4   4.8

1.0 20.6 10.9   4.5   2.3
Table 2.5  Monthly Average Daily Extraterrestrial Insolation on Horizontal Surface (MJ/m2)

Latitude Jan 17 Feb 16 Mar 16 Apr 15 May 15 June 11 July 17 Au

60°S 41.1 31.9 21.2 10.9 4.4 2.1 3.1

55°S 41.7 33.7 23.8 13.8 7.1 4.5 5.6 1

50°S 42.4 35.3 26.3 16.8 10.0 7.2 8.4 1

45°S 42.9 36.8 28.6 19.6 12.9 10.0 11.2 1

40°S 43.1 37.9 30.7 22.3 15.8 12.9 14.1 1

35°S 43.2 38.8 32.5 24.8 18.6 15.8 17.0 2

30°S 43.0 39.5 34.1 27.2 21.4 18.7 19.8 2

25°S 42.5 39.9 35.4 29.4 24.1 21.5 22.5 2

20°S 41.5 39.9 36.5 31.3 26.6 24.2 25.1 2

15°S 40.8 39.7 37.2 33.1 28.9 26.8 27.6 3

10°S 39.5 39.3 37.7 34.6 31.1 29.2 29.9 3

5°S 38.0 38.5 38.0 35.8 33.0 31.4 32.0 3

0 36.2 37.4 37.9 36.8 34.8 33.5 33.9 3

5°N 34.2 36.1 37.5 37.5 36.3 35.3 35.6 3

10°N 32.0 34.6 36.9 37.9 37.5 37.0 37.1 3

15°N 29.5 32.7 35.9 38.0 38.5 38.4 38.3 3

20°N 26.9 30.7 34.7 37.9 39.3 39.5 39.3 3

25°N 24.1 28.4 33.3 37.5 39.8 40.4 40.0 3

30°N 21.3 26.0 31.6 36.8 40.0 41.1 40.4 3

35°N 18.3 23.3 29.6 35.8 39.9 41.5 40.6 3

40°N 15.2 20.5 27.4 34.6 39.7 41.7 40.6 3

45°N 12.1 17.6 25.0 33.1 39.2 41.7 40.4 3

50°N   9.1 14.6 22.5 31.4 38.4 41.5 40.0 3

55°N   6.1 11.6 19.7 29.5 37.6 41.3 39.4 3

60°N   3.4   8.5 16.8 27.4 36.6 41.0 38.8 3
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According to the Liu and Jordan (1977) correlation,
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where
rd   ratio of hourly diffuse radiation to daily diffuse radiation.
hss  sunset hour angle (degrees).
h   hour angle in degrees at the midpoint of each hour.

According to the Collares-Pereira and Rabl (1979) correlation,
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	 (2.84a)

where
r  ratio of hourly total radiation to daily total radiation.

	 α   0 409 0 5016 60. . sin( )hss 	 (2.84b)

	 β   0 6609 0 4767 60. . sin( )hss 	 (2.84c)

E x a m p l e  2 . 1 5

Given the following empirical equation,

	

H

H
K K KD

T T T   1 390 4 027 5 531 3 1082 3. . . .
	

where HD is the monthly average daily diffuse radiation on horizontal sur-
face—see Eq. (2.105a)—estimate the average total radiation and the average 
diffuse radiation between 11:00 am and 12:00 pm solar time in the month of 
July on a horizontal surface located at 35°N latitude. The monthly average 
daily total radiation on a horizontal surface, H, in July at the surface location is 
23.14 MJ/m2-d.

Solution
From Table 2.5 at 35° N latitude for July, Ho  40 6. MJ/m2. Therefore,

K
H

HT
o

  
23 14

40 6
0 570

.

.
.

Therefore,

H

H
D     1 390 4 027 0 57 5 531 0 57 3 108 0 57 0 3162 3. . ( . ) . ( . ) . ( . ) .
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and

	 H HD   0 316 0 316 23 14 7 31 2. . ( . ) . MJ/m -d 	

From Table 2.5, the recommended average day for the month is July 17 
(N  199). The solar declination is calculated from Eq. (2.5) as
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The sunset hour angle is calculated from Eq. (2.15) as

cos( ) tan( ) tan( ) cos [ tan( ) tan( )]h L hss ss     δ → 1 35 21 106

The middle point of the hour from 11:00 am to 12:00 pm is 0.5 h from solar noon, 
or hour angle is 7.5°. Therefore, from Eqs. (2.84b), (2.84c), and (2.84a), we have
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From Eq. (2.83), we have
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2.3.8  Total Radiation on Tilted Surfaces
Usually, collectors are not installed horizontally but at an angle to increase 
the amount of radiation intercepted and reduce reflection and cosine losses. 
Therefore, system designers need data about solar radiation on such titled sur-
faces; measured or estimated radiation data, however, are mostly available either 
for normal incidence or for horizontal surfaces. Therefore, there is a need to con-
vert these data to radiation on tilted surfaces.

The amount of insolation on a terrestrial surface at a given location for a 
given time depends on the orientation and slope of the surface.

A flat surface absorbs beam (GBt), diffuse (GDt), and ground-reflected (GGt) 
solar radiation; that is,

	 G G G Gt Bt Dt Gt   	 (2.85)

As shown in Figure 2.28, the beam radiation on a tilted surface is

	 G GBt Bn cos( )θ 	 (2.86)

and on a horizontal surface,

	
G GB  Bn cos( )Φ 	 (2.87)

where
GBt  beam radiation on a tilted surface (W/m2).
GB   beam radiation on a horizontal surface (W/m2).

It follows that

	
R

G

GB  Bt

B

cos( )

cos( )

θ
Φ

	 (2.88)

where RB is called the beam radiation tilt factor. The term cos() can be calcu-
lated from Eq. (2.86) and cos() from Eq. (2.87). So the beam radiation com-
ponent for any surface is

	 G G RB BBt  	 (2.89)

In Eq. (2.88), the zenith angle can be calculated from Eq. (2.12) and the 
incident angle  can be calculated from Eq. (2.18) or, for the specific case of a 

GB

GBt

GBnGBn

α β

θ
Φ

Figure 2.28  Beam radiation on horizontal and tilted surfaces.
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south-facing fixed surface, from Eq. (2.20). Therefore, for a fixed surface fac-
ing south with tilt angle , Eq. (2.88) becomes

	
R

L L h

LB  
  cos( )

cos( )

sin( )sin( ) cos( )cos( )cos( )

sin( )s

θ β δ β δ
Φ iin( ) cos( )cos( )cos( )δ δ L h

	 (2.90a)

The values of RB for collector slopes equal to latitude and latitude 10°, which 
is the usual collector inclination for solar water-heating collectors, are shown in 
Figures A3.6 and A3.7 in Appendix 3. Equation (2.88) also can be applied to other 
than fixed surfaces, in which case the appropriate equation for cos(), as given in 
Section 2.2.1, can be used. For example, for a surface rotated continuously about 
a horizontal east-west axis, from Eq. (2.26a), the ratio of beam radiation on the 
surface to that on a horizontal surface at any time is given by
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	 (2.90b)

E x a m p l e  2 . 1 6

Estimate the beam radiation tilt factor for a surface located at 35°N latitude 
and tilted 45° at 2:00 pm solar time on March 10. If the beam radiation at nor-
mal incidence is 900 W/m2, estimate the beam radiation on the tilted surface.

Solution
From Example 2.14,   4.8° and h  30°. The beam radiation tilt factor is 
calculated from Eq. (2.90a) as
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

Therefore, the beam radiation on the tilted surface is calculated from Eq. (2.89) as

	 G G RB BBt
2W/m  900 1 312 1181( . ) 	

Many models give the solar radiation on a tilted surface. The first one is the iso-
tropic sky model developed originally by Hottel and Woertz (1942) and refined by 
Liu and Jordan (1960). According to this model, radiation is calculated as follows.

Diffuse radiation on a horizontal surface,

	

G G d GD R R 2 2
0

2

cos( )
/

Φ Φ
π

∫ 	 (2.91)

where GR  diffuse sky radiance (W/m2-rad).
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Diffuse radiation on a tilted surface,
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where  is the surface tilt angle as shown in Figure 2.28.
From Eq. (2.91), the second term of Eq. (2.92) becomes GR  GD/2. 

Therefore, Eq. (2.92) becomes
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Similarly, the ground-reflected radiation is obtained by G(GB  GD), 
where G is ground albedo. Therefore, GGt is obtained as follows.

Ground-reflected radiation,
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where Gr is the isotropic ground-reflected radiance (W/m2-rad).
Ground-reflected radiation on tilted surfaces,
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Combining Eq. (2.94) and (2.95) as before,
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Therefore, inserting Eqs. (2.93) and (2.96) into Eq. (2.85), we get
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The total radiation on a horizontal surface, G, is the sum of horizontal 
beam and diffuse radiation; that is,

	 G G GB D  	 (2.98)
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Therefore, Eq. (2.97) can also be written as
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where R is called the total radiation tilt factor.

Other radiation models
The isotropic sky model is the simplest model that assumes that all diffuse 
radiation is uniformly distributed over the sky dome and that reflection on the 
ground is diffuse. A number of other models have been developed by a num-
ber of researchers. Three of these models are summarized in this section: the 
Klucher model, the Hay-Davies model, and the Reindl model. The latter proved 
to give very good results in the Mediterranean region.

Klucher model
Klucher (1979) found that the isotopic model gives good results for overcast 
skies but underestimates irradiance under clear and partly overcast conditions, 
when there is increased intensity near the horizon and in the circumsolar region 
of the sky. The model developed by Klucher gives the total irradiation on a 
tilted plane:
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where F is a clearness index given by
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The first of the modifying factors in the sky diffuse component takes into 
account horizon brightening; the second takes into account the effect of cir-
cumsolar radiation. Under overcast skies, the clearness index F becomes 0 and 
the model reduces to the isotropic model.

Hay-Davies model
In the Hay-Davies model, diffuse radiation from the sky is composed of an iso-
tropic and circumsolar component (Hay and Davies, 1980) and horizon bright-
ening is not taken into account. The anisotropy index, A, defined in Eq. (2.102), 
represents the transmittance through atmosphere for beam radiation:
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The anisotropy index is used to quantify the portion of the diffuse radiation 
treated as circumsolar, with the remaining portion of diffuse radiation assumed 
isotropic. The circumsolar component is assumed to be from the sun’s position. 
The total irradiance is then computed by
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Reflection from the ground is dealt with as in the isotropic model.

Reindl model
In addition to isotropic diffuse and circumsolar radiation, the Reindl model 
also accounts for horizon brightening (Reindl et al., 1990a,b) and employs the 
same definition of the anisotropy index, A, as described in Eq. (2.102). The 
total irradiance on a tilted surface can then be calculated using
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Reflection on the ground is again dealt with as in the isotropic model. Due 
to the additional term in Eq. (2.104), representing horizon brightening, the 
Reindl model provides slightly higher diffuse irradiances than the Hay-Davies 
model.

Insolation on tilted surfaces

The amount of insolation on a terrestrial surface at a given location and time 
depends on the orientation and slope of the surface. In the case of flat-plate col-
lectors installed at a certain fixed angle, system designers need to have data 
about the solar radiation on the surface of the collector. Most measured data, 
however, are for either normal incidence or horizontal. Therefore, it is often nec-
essary to convert these data to radiation on tilted surfaces. Based on these data, a 
reasonable estimation of radiation on tilted surfaces can be made. An empirical 
method for the estimation of the monthly average daily total radiation incident 
on a tilted surface was developed by Liu and Jordan (1977). In their correlation, 
the diffuse to total radiation ratio for a horizontal surface is expressed in terms 
of the monthly clearness index, KT , with the following equation:

	

H

H
K K KD

T T T   1 390 4 027 5 531 3 1082 3. . . . 	 (2.105a)
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Collares-Pereira and Rabl (1979) expressed the same parameter by also 
considering the sunset hour angle:

	

H

H
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h
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[ . . ( )

ss

ss          ]]cos( )115 103KT  	 (2.105b)

where hss  sunset hour angle (degrees).
Erbs et al. (1982) also expressed the monthly average daily diffuse correla-

tions by taking into account the season, as follows.
For hss  81.4° and 0.3  KT   0.8,

	

H

H
K K KD

T T T   1 391 3 560 4 189 2 1372 3. . . . 	 (2.105c)

For hss  81.4° and 0.3  KT   0.8,

	

H

H
K K KD

T T T   1 311 3 022 3 427 1 8212 3. . . . 	 (2.105d)

With the monthly average daily total radiation H  and the monthly average 
daily diffuse radiation HD  known, the monthly average beam radiation on a 
horizontal surface can be calculated by

	 H H HB D  	 (2.106)

Like Eq. (2.99), the following equation may be written for the monthly 
total radiation tilt factor R :
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	 (2.107)

where
Ht   monthly average daily total radiation on a tilted surface.
RB  monthly mean beam radiation tilt factor.

The term RB  is the ratio of the monthly average beam radiation on a tilted 
surface to that on a horizontal surface. Actually, this is a complicated function 
of the atmospheric transmittance, but according to Liu and Jordan (1977), it 
can be estimated by the ratio of extraterrestrial radiation on the tilted surface to 
that on a horizontal surface for the month. For surfaces facing directly toward 
the equator, it is given by

	
R

L h h L
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where hss is sunset hour angle on the tilted surface (degrees), given by

	 h h L   
ss ss,min{ cos }[ tan( ) tan( )]}1 β δ 	 (2.109)

It should be noted that, for the Southern Hemisphere, the term (L – ) of 
Eqs. (2.108) and (2.109) changes to (L  ).

For the same days as those shown in Table 2.5, the monthly average ter-
restrial insolation on a tilted surface for various months for latitudes 60° 
to 60° and for a slope equal to latitude and latitude plus 10° is shown in 
Appendix 3, Figures A3.3 and A3.4, respectively.

E x a m p l e  2 . 1 7

For July, estimate the monthly average daily total solar radiation on a surface 
facing south, tilted 45°, and located at 35°N latitude. The monthly average 
daily insolation on a horizontal surface is 23.14 MJ/m2-day. Ground reflectance 
is equal to 0.2.

Solution
From Example 2.15, we have: H HD /   0.316,   21°, and hss  106°. The 
sunset hour angle for a tilted surface is given by Eq. (2.109):

	 h h Lss   min{ ,cos [ tan( ) tan( )}ss
1 β δ 	

Here, cos1 [tan(35  45) tan(21)]  86°.Therefore,

	 h  ss 86 	

The factor RB  is calculated from Eq. (2.108) as

R
L h h L

LB
ss

     cos( )cos( )sin( ) ( / ) sin( )sin( )

cos( )

δ π β δ180 ss

ccos( )sin( ) ( / ) sin( )sin( )

cos( )cos( )si

δ π δh h Lss ss




180

35 45 21 nn( ) ( / )( )sin( )sin( )

cos( )cos( )sin( )

86 180 86 35 45 21

35 21 106

 



π
(( / )( )sin( )sin( )

.

π 180 106 35 21

0 739

From Eq. (2.107),
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Finally, the average daily total radiation on the tilted surface for July is:

	 H RHt   0 804 23 14 18 6. ( . ) . MJ/m -d2
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2.3.9  Solar Radiation Measuring Equipment
A number of radiation parameters are needed for the design, sizing, perfor-
mance evaluation, and research of solar energy applications. These include 
total solar radiation, beam radiation, diffuse radiation, and sunshine duration. 
Various types of equipment measure the instantaneous and long-term integrated 
values of beam, diffuse, and total radiation incident on a surface. This equip-
ment usually employs the thermoelectric and photovoltaic effects to measure 
the radiation. Detailed description of this equipment is not within the scope of 
this book; this section is added, however, so the reader might know the types of 
available equipment. More details of this equipment can easily be found from 
manufacturers’ catalogues on the Internet.

There are basically two types of solar radiation measuring instruments: 
the pyranometer (see Figure 2.29) and the pyrheliometer. The former is used 
to measure total (beam and diffuse) radiation within its hemispherical field of 
view, whereas the latter is an instrument used for measuring the beam radiation 
at normal incidence. The pyranometer can also measure the diffuse solar radia-
tion if the sensing element is shaded from the beam radiation. For this purpose a 
shadow band is mounted with its axis tilted at an angle equal to the latitude of the 
location plus the declination for the day of measurement. Since the shadow band 
hides a considerable portion of the sky, the measurements require corrections for 
that part of diffuse radiation obstructed by the band. Pyrheliometers are used to 
measure direct solar irradiance, required primarily to predict the performance of 
concentrating solar collectors. Diffuse radiation is blocked by mounting the sensor  

Figure 2.29  Photograph of a pyranometer.



element at the bottom of a tube pointing directly at the sun. Therefore, a two-axis 
sun-tracking system is required to measure the beam radiation.

Finally, sunshine duration is required to estimate the total solar irradiation. 
The duration of sunshine is defined as the time during which the sunshine is 
intense enough to cast a shadow. Also, the duration of sunshine has been defined 
by the World Meteorological Organization as the time during which the beam 
solar irradiance exceeds the level of 120 W/m2. Two types of sunshine record-
ers are used: the focusing type and a type based on the photoelectric effect. The 
focusing type consists of a solid glass sphere, approximately 10 cm in diame-
ter, mounted concentrically in a section of a spherical bowl whose diameter is 
such that the sun’s rays can be focused on a special card with time marking, 
held in place by grooves in the bowl. The record card is burned whenever bright 
sunshine exists. Thus, the portion of the burned trace provides the duration of 
sunshine for the day. The sunshine recorder based on the photoelectric effect 
consists of two photovoltaic cells, with one cell exposed to the beam solar radia-
tion and the other cell shaded from it by a shading ring. The radiation difference 
between the two cells is a measure of the duration of sunshine.

The International Standards Organization (ISO) published a series of inter-
national standards specifying methods and instruments for the measurement of 
solar radiation. These are:

l	 ISO 9059 (1990). Calibration of field pyrheliometers by comparison to 
a reference pyrheliometer.

l	 ISO 9060 (1990). Specification and classification of instruments for 
measuring hemispherical solar and direct solar radiation. This standard 
establishes a classification and specification of instruments for the mea-
surement of hemispherical solar and direct solar radiation integrated over 
the spectral range from 0.3 to 3 m. According to the standard, pyranom-
eters are radiometers designed for measuring the irradiance on a plane 
receiver surface, which results from the radiant fluxes incident from the 
hemisphere above, within the required wavelength range. Pyrheliometers 
are radiometers designed for measuring the irradiance that results from 
the solar radiant flux from a well-defined solid angle, the axis of which is 
perpendicular to the plane receiver surface.

l	 ISO 9846 (1993). Calibration of a pyranometer using a pyrheliometer. 
This standard also includes specifications for the shade ring used to 
block the beam radiation, the measurement of diffuse radiation, and sup-
port mechanisms of the ring.

l	 IS0 9847 (1992). Calibration of field pyranometers by comparison to a 
reference pyranometer. According to the standard, accurate and precise 
measurements of the irradiance of the global (hemispheric) solar radia-
tion are required in:
1.	 The determination of the energy available to flat-plate solar collectors.
2.	The assessment of irradiance and radiant exposure in the testing of 

solar- and non-solar related material technologies.

Solar Radiation  105



106  Environmental Characteristics
3.	 The assessment of the direct versus diffuse solar components for energy 
budget analysis, for geographic mapping of solar energy, and as an aid 
in the determination of the concentration of aerosol and particulate pol-
lution and the effects of water vapor.

Although meteorological and resource assessment measurements generally 
require pyranometers oriented with their axes vertical, applications associated 
with flat-plate collectors and the study of the solar exposure of related mate-
rials require calibrations of instruments tilted at a predetermined non-vertical 
orientation. Calibrations at fixed tilt angles have applications that seek state-of-
the-art accuracy, requiring corrections for cosine, tilt, and azimuth.

Finally, the International Standards Organization published a technical 
report, “lSO/TR 9901: 1990—Field pyranometers—Recommended practice 
for use,” the scope of which is self-explanatory.

2.4  The solar resource
The operation of solar collectors and systems depends on the solar radiation input 
and the ambient air temperature and their sequences. One of the forms in which 
solar radiation data are available is on maps. These give the general impression 
of the availability of solar radiation without details on the local meteorological 
conditions and, for this reason, must be used with care. One valuable source of 
such information is the Meteonorm. Two maps showing the annual mean global 
solar radiation for the years 1981–2000 for Europe and North America are 
shown in Figures 2.30 and 2.31, respectively (Meteonorm, 2009). These are 
based on numerous climatological databases and computational models. Maps 
for other regions of the world can be obtained from the Meteonorm website 
(Meteonorm, 2009).

For the local climate, data in the form of a typical meteorological year are 
usually required. This is a typical year, which is defined as a year that sums up 
all the climatic information characterizing a period as long as the mean life of a 
solar system. In this way, the long-term performance of a collector or a system 
can be calculated by running a computer program over the reference year.

2.4.1  Typical Meteorological Year
A representative database of weather data for one-year duration is known as 
the test reference year (TRY) or typical meteorological year (TMY). A TMY 
is a data set of hourly values of solar radiation and meteorological elements. 
It consists of months selected from individual years concatenated to form a 
complete year. The TMY contains values of solar radiation (global and direct), 
ambient temperature, relative humidity, and wind speed and direction for 
all hours of the year. The selection of typical weather conditions for a given  
location is very crucial in computer simulations to predict the performance of 
solar systems and the thermal performance of buildings and has led various 
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investigators to either run long periods of observational data or select a particu-
lar year that appears to be typical from several years of data. The intended use 
of a TMY file is for computer simulations of solar energy conversion systems 
and building systems (see Chapter 11, Section 11.5).

The adequacy of using an average or typical year of meteorological data 
with a simulation model to provide an estimate of the long-term system per-
formance depends on the sensitivity of system performance to the hourly and 
daily weather sequences. Regardless of how it is selected, an “average” year 
cannot be expected to have the same weather sequences as those occurring over 
the long term. However, the simulated performance of a system for an “average 
year” may provide a good estimate of the long-term system performance, if 
the weather sequences occurring in the average year are representative of those 
occurring over the long term or the system performance is independent of the 
weather sequences (Klein et al., 1976). Using this approach, the long-term inte-
grated system performance can be evaluated and the dynamic system’s behav-
ior can be obtained.

In the past, many attempts were made to generate such climatological data-
bases for different areas around the world using various methodologies. One 
of the most common methodologies for generating a TMY is the one proposed 
by Hall et al. (1978) using the Filkenstein-Schafer (FS) statistical method 
(Filkenstein and Schafer, 1971).

The FS method algorithm is as follows: First, the cumulative distribution 
functions (CDFs) are calculated for each selected meteorological parameter 
and for each month, over the whole selected period as well as over each spe-
cific year of the period. To calculate the CDFs for each parameter, the data 
are grouped in a number of bins, and the CDFs are calculated by counting the 
cases in the same bin.

The next step is to compare the CDF of a meteorological parameter, such 
as global horizontal radiation, for each month for each specific year with the 
respective CDF of the long-term composite of all years in the selected period.

The FS is the mean difference of the long-term CDF, CDFLT, and the spe-
cific month’s CDF, CDFSM, calculated in the bins used for the estimation of the 
CDFs, given by

	

FS CDF CDFLT SM 


1

1N
z zi i
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N

( ) ( )∑ 	 (2.110)

where
N  number of bins (by default, N  31).
zi  �value of the FS statistic for the particular month of the specific year and 

the meteorological parameter under consideration.

The next step is the application of the weighting factors, WFj, to the FS 
statistics values, one for each of the considered meteorological parameters, 
FSj, corresponding to each specific month in the selected period. In this way, 
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a weighted sum, or average value, WS, is derived and this value is assigned to 
the respective month; that is,

	

WS WF FS
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1M j j
j

M

∑ 	 (2.111)

with
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where M  number of parameters in the database.
The user can change the WF values, thus examining the relative importance 

of each meteorological parameter in the final result. The smaller the WS, the 
better the approximation to a typical meteorological month (TMM).

Applying this procedure for all months of the available period, a composite 
year can be formed consisting of the selected months with the smallest WS 
values.

The root mean standard deviation (RMSD) of the total daily values of the 
global solar irradiance distribution for each month of each year can then be esti-
mated with respect to the mean long-term hourly distribution and the FS statis-
tics. The RMSD can be computed, and for each month, the year corresponding 
to the lowest value can be selected. The estimations are carried out according to 
the expression

	
RMSD 




( )x x

N

i
i

N

1
∑

	 (2.113)

where x   the average value of its parameter over the number of bins (N  31).
A total of 8760 rows are included in a TMY file, each corresponding to an 

hour of the year. The format of TMY file suitable for earlier versions of the 
TRNSYS program is shown in Table 2.6.

2.4.2  Typical Meteorological Year, Second Generation
A type 2 TMY format is completely different and consists of many more fields. 
Such a file can be used with detailed building analysis programs such as TRNSYS 
(version 16), DOE-2, BDA (Building Design Advisor), and Energy Plus.  
A TMY-2 file also contains a complete year (8760 items of data) of hourly mete-
orological data. Each hourly record in the file contains values for solar radiation, 
dry bulb temperature, and meteorological elements, such as illuminance, precip-
itation, visibility, and snowfall. Radiation and illumination data are becoming 
increasingly necessary in many simulation programs. A two-character source 
and an uncertainty flag are attached to each data value to indicate whether the 
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data value was measured, modeled, or missing and provide an estimate of the 
uncertainty of the data value. By including the uncertainty flags, users can 
evaluate the potential impact of weather variability on the performance of solar 
systems or buildings.

The first record of each file is the file header that describes the station. 
The file header contains a five-digit meteorological station number, city, state 
(optional), time zone, latitude, longitude, and elevation. The field positions 
and definitions of these header elements, together with the values given for the 
TMY2 for Nicosia, Cyprus (Kalogirou, 2003), are shown in Table 2.7.

Following the file header, 8760 hourly data records provide a one-year 
record of solar radiation, illuminance, and meteorological data, along with their 
source and uncertainty flags. Table 2.8 gives field positions and element defi-
nitions of each hourly record (Marion and Urban, 1995). Each hourly record 
begins with the year (field positions 2-3) from which the typical month was cho-
sen, followed by the month, day, and hour information and the rest of the data as 
shown in Table 2.8 (Kalogirou, 2003).

For solar radiation and illuminance elements, the data values represent 
the energy received during the 60 minutes preceding the hour indicated. For 
meteorological elements (with a few exceptions), observations or measure-
ments were made at the hour indicated. A few of the meteorological elements 

Table 2.6  Format of TMY File Suitable for the TRNSYS Program Up to Version 14

Month 
of year

Hour 
of 
month

IB (kJ/m2)a I (kJ/m2)b Dry 
bulb 
tempc

HR
d Wind 

velocity 
(m/s)

Wind 
directione

1 1 0 0 75 60.47 1 12

1 2 0 0 75 60.47 1 12

1 3 0 0 70 57.82 1 12

1 4 0 0 70 57.82 1 12

1 5 0 0 75 58.56 2 12

— — — — — — — —

12 740 0 0 45 47.58 1 23

12 741 0 0 30 43.74 1 25

12 742 0 0 20 40.30 1 26

12 743 0 0 20 40.30 1 27

12 744 0 0 10 37.51 1 23

Notes:
aIB   Direct (beam) normal solar radiation (integrated over previous hour) in kJ/m2.
bI  Global solar radiation on horizontal (integrated over previous hour) in kJ/m2.
cDegrees  10 (°C).
dHumidity ratio (HR) in kg of water/kg of air  10,000.
eDegrees  10, expressed as 0 for wind from north, 9 for east, 18 for south, and so forth.
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had observations, measurements, or estimates made at daily, instead of hourly, 
intervals. Consequently, the data values for broadband aerosol optical depth, 
snow depth, and days since last snowfall represent the values available for the 
day indicated.

With the exception of extraterrestrial horizontal and extraterrestrial direct 
radiation, the two field positions immediately following the data value provide 
source and uncertainty flags both to indicate whether the data were measured, 
modeled, or missing and to provide an estimate of the uncertainty of the data. 
Source and uncertainty flags for extraterrestrial horizontal and extraterrestrial 
direct radiation are not provided, because these elements were calculated using 
equations considered to give exact values. Explanation of the uncertainty flags 
for the other quantities is given in Marion and Urban (1995).

A sample of the Nicosia TMY-2 file, showing the data for the first days of 
January, including the header elements, can be seen in Figure 2.32 (Kalogirou, 
2003). It should be noted that the format of the TMY-2 for the Energy Plus 
program is a little different than the one shown in Figure 2.32 since it includes 
after the header design conditions, extreme periods and holidays, and daylight 
saving data.

Table 2.7  Header Elements in the TMY-2 Format (first record only)

Field position Element Definition Value used

002–006 5-digit number Weather station’s number 17609

008–029 City City where the station is located 

(max 22 characters)

Nicosia

031–032 State State where the station is located 

(2-letter abbr)

—

034–036 Time zone Time zone: Number of hours  

by which the local standard time 

is ahead of Greenwich (ve E, 

ve W)

2

038–044 Latitude Latitude of the station:

038 N  North of equator N

040–041 Degrees 34

043–044 Minutes 53

046–053 Longitude Longitude of the station:

046 W  West, E  East E

048–050 Degrees 33

052–053 Minutes 38

056–059 Elevation Elevation of station in meters 

above sea level

162
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(Continued)
Table 2.8  Data Elements in the TMY-2 Format (all except the first record) (from Marion and

Field position Element Value Definition

002–009 Local standard time

002–003 Year 2-digit Year

004–005 Month 1–12 Month

006–007 Day 1–31 Day of month

008–009 Hour 1–24 Hour of day in l

010–013 Extraterrestrial horizontal  

radiation

0–1415 Amount of sola

top of the atmos

014–017 Extraterrestrial direct normal 

radiation

0–1415 Amount of sola

sun at the top of

018–023 Global horizontal radiation Total amount of

horizontal surfa

018–021 Data value 0–1200

022 Flag for data source A–H, ?

023 Flag for data uncertainty 0–9

024–029 Direct normal radiation Amount of sola

centered on the 

024–027 Data value 0–1100

028 Flag for data source A–H, ?

029 Flag for data uncertainty 0–9
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T

 radiation in Wh/m2 received from the sky (excluding the 

orizontal surface

ount of direct and diffuse illuminance in hundreds of lux 

rizontal surface

 130,000 lux

 of direct normal illuminance in hundreds of lux received 

d of view centered on the sun

 110,000 lux

 of illuminance in hundreds of lux received from the sky 

lar disk) on a horizontal surface

0,000 lux
able 2.8  Continued

Field position Element Value Definition

030–035 Diffuse horizontal radiation Amount of solar

solar disk) on a h

030–033 Data value 0–700

034 Flag for data source A–H, ?

035 Flag for data uncertainty 0–9

036–041 Global horiz. illuminance Average total am

received on a ho

036–039 Data value 0–1300 0 to 1300  0 to

040 Flag for data source I, ?

041 Flag for data uncertainty 0–9

042–047 Direct normal illuminance Average amount

within a 5.7° fiel

042–045 Data value 0–1100 0 to 1100  0 to

046 Flag for data source I, ?

047 Flag for data uncertainty 0–9

048–053 Diffuse horiz. illuminance Average amount

(excluding the so

048–051 Data value 0–800 0 to 800  0 to 8

052 Flag for data source I, ?

053 Flag for data uncertainty 0–9



(Continued)

Table 2.8  Continued

f luminance at the sky’s zenith in tens of Cd/m2

0,000 Cd/m2

me in tenths covered by clouds or obscuring phenomena 

ted

me in tenths covered by clouds or obscuring phenomena 

ving the sky or higher cloud layers at the hour indicated

ture in tenths of a degree Centigrade at the hour 

50.0 to 50.0°C

T
he S

olar R
esource 
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Field position Element Value Definition

054–059 Zenith luminance Average amount o

054–057 Data value 0–7000 0 to 7000  0 to 7

058 Flag for data source I, ?

059 Flag for data uncertainty 0–9

060–063 Total sky cover Amount of sky do

at the hour indica

060–061 Data value 0–10

062 Flag for data source A–F

063 Flag for data uncertainty 0–9

064–067 Opaque sky cover Amount of sky do

that prevent obser

064–065 Data value 0–10

066 Flag for data source A–F

067 Flag for data uncertainty 0–9

068–073 Dry bulb temperature Dry bulb tempera

indicated.

068–071 Data value 500 to 500 500 to 500  

072 Flag for data source A–F

073 Flag for data uncertainty 0–9
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perature in tenths of a degree Centigrade at the hour 

 60.0 to 30.0°C

ity in percent at the hour indicated

ressure at station in mbar at the hour indicated

 in degrees at the hour indicated. (N  0 or 360,  

80, W  270). For calm winds, wind direction equals  
Table 2.8  Continued

Field position Element Value Definition

074–079 Dew point temperature Dew point tem

indicated.

074–077 Data value 600 to 300 600 to 300 

078 Flag for data source A–F

079 Flag for data uncertainty 0–9

080–084 Relative humidity Relative humid

080–082 Data value 0–100

083 Flag for data source A–F

084 Flag for data uncertainty 0–9

085–090 Atmospheric pressure Atmospheric p

085–088 Data value 700–1100

089 Flag for data source A–F

090 Flag for data uncertainty 0–9

091–095 Wind direction Wind direction

E  90, S  1

zero.

091–093 Data value 0–360

094 Flag for data source A–F

095 Flag for data uncertainty 0–9



(Continued)

Table 2.8  Continued

in tenths of meters per second at the hour indicated.

 to 40.0 m/s

isibility in tenths of kilometers at the hour indicated.

mited visibility

 0.0 to 160.9 km

sing data

ht in meters at the hour indicated.

limited ceiling height

roform

ssing data

ther conditions denoted by a 10-digit number.

 water in millimeters at the hour indicated T
he S

olar R
esource 
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Field position Element Value Definition

096–100 Wind speed Wind speed 

096–98 Data value 0–400 0 to 400  0

99 Flag for data source A–F

100 Flag for data uncertainty 0–9

101–106 Visibility Horizontal v

101–104 Data value 0–1609 7777  unli

105 Flag for data source A–F, ? 0 to 1609 

106 Flag for data uncertainty 0–9 9999  mis

107–113 Ceiling height Ceiling heig

107–111 Data value 0–30450 77777  un

112 Flag for data source A–F, ? 88888  cir

113 Flag for data uncertainty 0–9 99999  mi

114–123 Present weather — Present wea

124–128 Precipitable water Precipitation

124–126 Data value 0–100

127 Flag for data source A–F

128 Flag for data uncertainty 0–9
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d aerosol optical depth (broadband turbidity) in thousandths on 

dicated.

 0.0 to 0.240

th in centimeters on the day indicated.

issing data

f days since last snowfall.

or greater days

sing data
Table 2.8  Continued

Field position Element Value Definition

129–133 Aerosol optical depth Broadban

the day in

129–131 Data value 0–240 0 to 240 

132 Flag for data source A–F

133 Flag for data uncertainty 0–9

134–138 Snow depth Snow dep

134–136 Data value 0–150 999  m

137 Flag for data source A–F, ?

138 Flag for data uncertainty 0–9

139–142 Days since last snowfall Number o

139–140 Data value 0–88 88  88 

141 Flag for data source A–F, ? 99  mis

142 Flag for data uncertainty 0–9



Exercises
2.1	 As an assignment using a spreadsheet program and the relations pre-

sented in this chapter, try to create a program that estimates all solar 
angles according to the latitude, day of year, hour, and slope of surface.

2.2	 As an assignment using a spreadsheet program and the relations presented 
in this chapter, try to create a program that estimates all solar angles 
according to the latitude, day of year, and slope of surface for all hours of 
a day.

2.3	 Calculate the solar declination for the spring and fall equinoxes and the 
summer and winter solstices.

2.4	 Calculate the sunrise and sunset times and day length for the spring and 
fall equinoxes and the summer and winter solstices at 45°N latitude and 
35°E longitude.

2.5	 Determine the solar altitude and azimuth angles at 10:00 am local time 
for Rome, Italy, on June 10.

2.6	 Calculate the solar zenith and azimuth angles, the sunrise and sunset times, 
and the day length for Cairo, Egypt, at 10:30 am solar time on April 10.

2.7	 Calculate the sunrise and sunset times and altitude and azimuth angles 
for London, England, on March 15 and September 15 at 10:00 am and 
3:30 pm solar times.

2.8	 What is the solar time in Denver, Colorado, on June 10 at 10:00 am 
Mountain Standard Time?

2.9	 A flat-plate collector in Nicosia, Cyprus, is tilted at 40° from horizon-
tal and pointed 10° east of south. Calculate the solar incidence angle 
on the collector at 10:30 am and 2:30 pm solar times on March 10 and 
September 10.

2.10	 A vertical surface in Athens, Greece, faces 15° west of due south. 
Calculate the solar incidence angle at 10:00 am and 3:00 pm solar times 
on January 15 and November 10.

2.11	 By using the sun path diagram, find the solar altitude and azimuth 
angles for Athens, Greece, on January 20 at 10:00 am.

2.12	 Two rows of 6 m wide by 2 m high flat-plate collector arrays tilted at 
40° are facing due south. If these collectors are located in 35°N latitude, 
using the sun path diagram find the months of the year and the hours of 
day at which the front row will cast a shadow on the second row when 
the distance between the rows is 3 m. What should be the distance so 
there will be no shading?

 17609 NICOSIA                     2 N 34 53 E 33 38   162
 86 1 1 1   01415   0?9   0?9   0?9   0?9   0?9   0?9   0?9 5B8 2B8  75C9  65C9 94C91021C9120*0 10B8 233B877777*09999999999  0*0 70E8  0*088*0
 86 1 1 2   01415   0?9   0?9   0?9   0?9   0?9   0?9   0?9 4B8 2B8  75C9  65C9 94C91021C9120*0 10B8 217B877777*09999999999  0*0 70E8  0*088*0
 86 1 1 3   01415   0?9   0?9   0?9   0?9   0?9   0?9   0?9 4A7 1A7  70C9  62C9 93C91021C9120A7 10A7 200A722000A79999999999  0*0 70E8  0*088*0
 86 1 1 4   01415   0?9   0?9   0?9   0?9   0?9   0?9   0?9 4B8 1B8  70C9  59C9 93C91021C9120*0 20B8 333B822000*09999999999  0*0 70E8  0*088*0
 86 1 1 5   01415   0?9   0?9   0?9   0?9   0?9   0?9   0?9 3B8 1B8  75C9  60C9 92C91021C9120*0 10B8 467B822000*09999999999  0*0 70E8  0*088*0
 86 1 1 6   01415   1?9   0?9   0?9   0?9   0?9   0?9   0?9 3B8 1A7  75C9  61C9 91C91021C9120A7 10A7 600A722000A79999999999  0*0 70E8  0*088*0
 86 1 1 7   01415  19H9   0H9   0H9   0I9   0I9   0I9   0I9 3B8 2B8  90B8  65C8 89E81021B8120*0 10B8 600B822000*09999999999  0*0 70E8  0*088*0
 86 1 1 8 1401415  70H9   0H9  70H9  52I9  53I9  47I9  68I9 3B8 2B8  90B8  69C8 87E81021B8120*0 10B8 600B822000*09999999999  0*0 70E8  0*088*0
 86 1 1 9 3731415  89G9   0G9  89G9 221I9 369I9 118I9 161I9 2A7 2A7 120A7  77A7 83E81022E8120A7 20A7 600A722000A79999999999  0*0 70E8  0*088*0
 86 1 110 5601415  78H9   0H9  78H9 382I9 647I9 126I9 168I9 3B8 2B8 120B8  84C8 79E81021B8 80*0 20B8 533B822000*09999999999  0*0 70E8  0*088*0

Figure 2.32  Format of TMY-2 file.
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2.13	 Find the blackbody spectral emissive power at   8 m for a source at 
400 K, 1000 K, and 6000 K.

2.14	 Assuming that the sun is a blackbody at 5777 K, at what wavelength 
does the maximum monochromatic emissive power occur? What frac-
tion of energy from this source is in the visible part of the spectrum in 
the range 0.38–0.78 m?

2.15	 What percentage of blackbody radiation for a source at 323 K is in the 
wavelength region 6–15 m?

2.16	 A 2 mm thick glass sheet has a refraction index of 1.526 and an extinc-
tion coefficient of 0.2 cm1. Calculate the reflectivity, transmissivity, 
and absorptivity of the glass sheet at 0°, 20°, 40°, and 60° incidence 
angles.

2.17	 A flat-plate collector has an outer glass cover of 4 mm thick K  23 m1 
and refractive index of 1.526, and a tedlar inner cover with refractive 
index of 1.45. Calculate the reflectivity, transmissivity, and absorptiv-
ity of the glass sheet at a 40° incidence angle by considering tedlar to 
be of a very small thickness; i.e., absorption within the material can be 
neglected.

2.18	 The glass plate of a solar greenhouse has a transmissivity of 0.90 for 
wavelengths between 0.32 and 2.8 m and is completely opaque at 
shorter and longer wavelengths. If the sun is a blackbody radiating 
energy to the earth’s surface at an effective temperature of 5770 K and 
the interior of the greenhouse is at 300 K, calculate the percent of inci-
dent solar radiation transmitted through the glass and the percent of 
thermal radiation emitted by the interior objects that is transmitted out.

2.19	 A 30 m2 flat plate solar collector is absorbing radiation at a rate of 
900 W/m2. The environment temperature is 25°C and the collector 
emissivity is 0.85. Neglecting conduction and convection losses, calcu-
late the equilibrium temperature of the collector and the net radiation 
exchange with the surroundings.

2.20	 Two large parallel plates are maintained at 500 K and 350 K, respec-
tively. The hotter plate has an emissivity of 0.6 and the colder one 0.3. 
Calculate the net radiation heat transfer between the plates.

2.21	 Find the direct normal and horizontal extraterrestrial radiation at 
2:00 pm solar time on February 21 for 40°N latitude and the total solar 
radiation on an extraterrestrial horizontal surface for the day.

2.22	 Estimate the average hourly diffuse and total solar radiation incident on a 
horizontal surface for Rome, Italy, on March 10 at 10:00 am and 1:00 pm 
solar times if the monthly average daily total radiation is 18.1 MJ/m2.

2.23	 Calculate the beam and total radiation tilt factors and the beam and total 
radiation incident on a surface tilted at 45° toward the equator one hour 
after local solar noon on April 15. The surface is located at 40°N lati-
tude and the ground reflectance is 0.25. For that day, the beam radia-
tion at normal incidence is GB  710 W/m2 and diffuse radiation on the  
horizontal is GD  250 W/m2.
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2.24	 For a south-facing surface located at 45°N latitude and tilted at 30° from 
the horizontal, calculate the hourly values of the beam radiation tilt fac-
tor on September 10.

2.25	 A collector located in Berlin, Germany is tilted at 50° and receives 
a monthly average daily total radiation H

–
 equal to 17 MJ/m2-day. 

Determine the monthly mean beam and total radiation tilt factors for 
October for an area where the ground reflectance is 0.2. Also, estimate 
the monthly average daily total solar radiation on the surface.
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Figure 2.30  Annual total solar irradiation on horizontal surface for Europe. Source: Meteono
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Figure 2.31  Annual total solar irradiation on horizontal surface for North America. Source: Meteon
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